

R Programming for Data Science

Roger D. Peng

This book is for sale at http://leanpub.com/rprogramming

This version was published on 2022-05-31

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2014 - 2022 Roger D. Peng

http://leanpub.com/rprogramming
https://leanpub.com/
https://leanpub.com/manifesto

Also By Roger D. Peng
The Art of Data Science

Exploratory Data Analysis with R

Executive Data Science

Report Writing for Data Science in R

Advanced Statistical Computing

The Data Science Salon

Conversations On Data Science

Mastering Software Development in R

Essays on Data Analysis

Tidyverse Skills for Data Science in R

https://leanpub.com/u/rdpeng
https://leanpub.com/artofdatascience
https://leanpub.com/exdata
https://leanpub.com/eds
https://leanpub.com/reportwriting
https://leanpub.com/advstatcomp
https://leanpub.com/thedatasciencesalon
https://leanpub.com/conversationsondatascience
https://leanpub.com/msdr
https://leanpub.com/dataanalysisessays
https://leanpub.com/tidyverseskillsdatascience

Contents

1. Stay in Touch! . 1

2. Preface . 2

3. History and Overview of R . 5
3.1 What is R? . 5
3.2 What is S? . 5
3.3 The S Philosophy . 6
3.4 Back to R . 6
3.5 Basic Features of R . 7
3.6 Free Software . 7
3.7 Design of the R System . 8
3.8 Limitations of R . 9
3.9 R Resources . 10

4. Getting Started with R . 12
4.1 Installation . 12
4.2 Getting started with the R interface . 12

5. R Nuts and Bolts . 13
5.1 Entering Input . 13
5.2 Evaluation . 13
5.3 R Objects . 14
5.4 Numbers . 15
5.5 Attributes . 15
5.6 Creating Vectors . 15
5.7 Mixing Objects . 16
5.8 Explicit Coercion . 16
5.9 Matrices . 17
5.10 Lists . 18
5.11 Factors . 19
5.12 Missing Values . 20
5.13 Data Frames . 21
5.14 Names . 22
5.15 Summary . 23

CONTENTS

6. Getting Data In and Out of R . 24
6.1 Reading and Writing Data . 24
6.2 Reading Data Files with read.table() . 24
6.3 Reading in Larger Datasets with read.table . 25
6.4 Calculating Memory Requirements for R Objects . 26

7. Using the readr Package . 28

8. Using Textual and Binary Formats for Storing Data . 32
8.1 Using dput() and dump() . 32
8.2 Binary Formats . 34

9. Interfaces to the Outside World . 36
9.1 File Connections . 36
9.2 Reading Lines of a Text File . 37
9.3 Reading From a URL Connection . 38

10. Subsetting R Objects . 39
10.1 Subsetting a Vector . 39
10.2 Subsetting a Matrix . 40
10.3 Subsetting Lists . 41
10.4 Subsetting Nested Elements of a List . 42
10.5 Extracting Multiple Elements of a List . 43
10.6 Partial Matching . 43
10.7 Removing NA Values . 44

11. Vectorized Operations . 46
11.1 Vectorized Matrix Operations . 47

12. Dates and Times . 48
12.1 Dates in R . 48
12.2 Times in R . 48
12.3 Operations on Dates and Times . 50
12.4 Summary . 51

13. Managing Data Frames with the dplyr package . 52
13.1 Data Frames . 52
13.2 The dplyr Package . 52
13.3 dplyr Grammar . 53
13.4 Installing the dplyr package . 53
13.5 select() . 54
13.6 filter() . 56
13.7 arrange() . 58
13.8 rename() . 59
13.9 mutate() . 59

CONTENTS

13.10 group_by() . 60
13.11 %>% . 62
13.12 Summary . 64

14. Control Structures . 65
14.1 if-else . 65
14.2 for Loops . 67
14.3 Nested for loops . 69
14.4 while Loops . 69
14.5 repeat Loops . 70
14.6 next, break . 71
14.7 Summary . 71

15. Functions . 72
15.1 Functions in R . 72
15.2 Your First Function . 72
15.3 Argument Matching . 75
15.4 Lazy Evaluation . 77
15.5 The ... Argument . 78
15.6 Arguments Coming After the ... Argument . 79
15.7 Summary . 80

16. Scoping Rules of R . 81
16.1 A Diversion on Binding Values to Symbol . 81
16.2 Scoping Rules . 82
16.3 Lexical Scoping: Why Does It Matter? . 83
16.4 Lexical vs. Dynamic Scoping . 84
16.5 Application: Optimization . 86
16.6 Plotting the Likelihood . 88
16.7 Summary . 91

17. Coding Standards for R . 92

18. Loop Functions . 93
18.1 Looping on the Command Line . 93
18.2 lapply() . 93
18.3 sapply() . 97
18.4 split() . 98
18.5 Splitting a Data Frame . 99
18.6 tapply . 102
18.7 apply() . 104
18.8 Col/Row Sums and Means . 105
18.9 Other Ways to Apply . 105
18.10 mapply() . 106

CONTENTS

18.11 Vectorizing a Function . 109
18.12 Summary . 110

19. Regular Expressions . 111
19.1 Before You Begin . 111
19.2 Primary R Functions . 111
19.3 grep() . 112
19.4 grepl() . 115
19.5 regexpr() . 115
19.6 sub() and gsub() . 117
19.7 regexec() . 118
19.8 The stringr Package . 121
19.9 Summary . 123

20. Debugging . 124
20.1 Something’s Wrong! . 124
20.2 Figuring Out What’s Wrong . 127
20.3 Debugging Tools in R . 127
20.4 Using traceback() . 128
20.5 Using debug() . 129
20.6 Using recover() . 130
20.7 Summary . 131

21. Profiling R Code . 132
21.1 Using system.time() . 133
21.2 Timing Longer Expressions . 134
21.3 The R Profiler . 134
21.4 Using summaryRprof() . 136
21.5 Summary . 137

22. Simulation . 138
22.1 Generating Random Numbers . 138
22.2 Setting the random number seed . 139
22.3 Simulating a Linear Model . 140
22.4 Random Sampling . 142
22.5 Summary . 144

23. Data Analysis Case Study: Changes in Fine Particle Air Pollution in the U.S. 145
23.1 Synopsis . 145
23.2 Loading and Processing the Raw Data . 145
23.3 Results . 147

24. Parallel Computation . 155
24.1 Hidden Parallelism . 155

CONTENTS

24.2 Embarrassing Parallelism . 157
24.3 The Parallel Package . 158
24.4 Example: Bootstrapping a Statistic . 163
24.5 Building a Socket Cluster . 167
24.6 Summary . 168

25. Why I Indent My Code 8 Spaces . 170

26. About the Author . 173

1. Stay in Touch!
Thanks for purchasing this book. If you are interested in hearing more from me about things that
I’m working on (books, data science courses, podcast, etc.), I have a regular podcast called Not So
Standard Deviations¹ that I co-host with Dr. Hilary Parker, a Data Scientist at Stitch Fix. On this
podcast, Hilary and I talk about the craft of data science and discuss common issues and problems
in analyzing data. We’ll also compare how data science is approached in both academia and industry
contexts and discuss the latest industry trends. You can listen to recent episodes on our web page or
you can subscribe to it in iTunes² or your favorite podcasting app.

For those of you who purchased a printed copy of this book, I encourage you to go to the Leanpub
web site and obtain the e-book version³, which is available for free. The reason is that I will
occasionally update the book with new material and readers who purchase the e-book version are
entitled to free updates (this is unfortunately not yet possible with printed books).

Thanks again for purchasing this book and please do stay in touch!

¹http://nssdeviations.com
²https://itunes.apple.com/us/podcast/not-so-standard-deviations/id1040614570
³https://leanpub.com/rprogramming

http://nssdeviations.com/
http://nssdeviations.com/
https://itunes.apple.com/us/podcast/not-so-standard-deviations/id1040614570
https://leanpub.com/rprogramming
http://nssdeviations.com/
https://itunes.apple.com/us/podcast/not-so-standard-deviations/id1040614570
https://leanpub.com/rprogramming

2. Preface
I started using R in 1998 when I was a college undergraduate working on my senior thesis. The
version was 0.63. I was an applied mathematics major with a statistics concentration and I was
workingwithDr. Nicolas Hengartner on an analysis of word frequencies in classic texts (Shakespeare,
Milton, etc.). The idea was to see if we could identify the authorship of each of the texts based on how
frequently they used certain words. We downloaded the data from Project Gutenberg and used some
basic linear discriminant analysis for the modeling. The work was eventually published¹ and was
my first ever peer-reviewed publication. I guess you could argue it was my first real “data science”
experience.

Back then, no one was using R. Most of my classes were taught with Minitab, SPSS, Stata, or
Microsoft Excel. The cool people on the cutting edge of statistical methodology used S-PLUS. I
was working on my thesis late one night and I had a problem. I didn’t have a copy of any of those
software packages because they were expensive and I was a student. I didn’t feel like trekking over
to the computer lab to use the software because it was late at night.

But I had the Internet! After a couple of Yahoo! searches I found a web page for something called R,
which I figured was just a play on the name of the S-PLUS package. From what I could tell, R was a
“clone” of S-PLUS that was free. I had already written some S-PLUS code for my thesis so I figured
I would try to download R and see if I could just run the S-PLUS code.

It didn’t work. At least not at first. It turns out that R is not exactly a clone of S-PLUS and quite a few
modifications needed to be made before the code would run in R. In particular, R was missing a lot of
statistical functionality that had existed in S-PLUS for a long time already. Luckily, R’s programming
language was pretty much there and I was able to more or less re-implement the features that were
missing in R.

After college, I enrolled in a PhD program in statistics at the University of California, Los Angeles.
At the time the department was brand new and they didn’t have a lot of policies or rules (or classes,
for that matter!). So you could kind of do what you wanted, which was good for some students and
not so good for others. The Chair of the department, Jan de Leeuw, was a big fan of XLisp-Stat and
so all of the department’s classes were taught using XLisp-Stat. I diligently bought my copy of Luke
Tierney’s book² and learned to really love XLisp-Stat. It had a number of features that R didn’t have
at all, most notably dynamic graphics.

But ultimately, there were only so many parentheses that I could type, and still all of the research-
level statistics was being done in S-PLUS. The department didn’t really have a lot of copies of S-PLUS
lying around so I turned back to R. When I looked around at my fellow students, I realized that I
was basically the only one who had any experience using R. Since there was a budding interest in R

¹http://amstat.tandfonline.com/doi/abs/10.1198/000313002100#.VQGiSELpagE
²http://www.amazon.com/LISP-STAT-Object-Oriented-Environment-Statistical-Probability/dp/0471509167/

http://amstat.tandfonline.com/doi/abs/10.1198/000313002100#.VQGiSELpagE
http://www.amazon.com/LISP-STAT-Object-Oriented-Environment-Statistical-Probability/dp/0471509167/
http://www.amazon.com/LISP-STAT-Object-Oriented-Environment-Statistical-Probability/dp/0471509167/
http://amstat.tandfonline.com/doi/abs/10.1198/000313002100#.VQGiSELpagE
http://www.amazon.com/LISP-STAT-Object-Oriented-Environment-Statistical-Probability/dp/0471509167/

Preface 3

around the department, I decided to start a “brown bag” series where every week for about an hour
I would talk about something you could do in R (which wasn’t much, really). People seemed to like
it, if only because there wasn’t really anyone to turn to if you wanted to learn about R.

By the time I left grad school in 2003, the department had essentially switched over from XLisp-
Stat to R for all its work (although there were a few hold outs). Jan discusses the rationale for the
transition in a paper³ in the Journal of Statistical Software.

In the next step of my career, I went to the Department of Biostatistics⁴ at the Johns Hopkins
Bloomberg School of Public Health, where I have been for the past 16 years. When I got to Johns
Hopkins people already seemed into R. Most people had abandoned S-PLUS a while ago and were
committed to using R for their research. Of all the available statistical packages, R had the most
powerful and expressive programming language, which was perfect for someone developing new
statistical methods.

However, we didn’t really have a class that taught students how to use R. This was a problem because
most of our grad students were coming into the program having never heard of R. Most likely in
their undergraduate programs, they used some other software package. So along with Rafael Irizarry,
Brian Caffo, Ingo Ruczinski, and Karl Broman, I started a new class to teach our graduate students
R and a number of other skills they’d need in grad school.

The class was basically a weekly seminar where one of us talked about a computing topic of interest.
I gave some of the R lectures in that class and when I asked people who had heard of R before, almost
no one raised their hand. And no one had actually used it before. The main selling point at the time
was “It’s just like S-PLUS but it’s free!” A lot of people had experience with SAS or Stata or SPSS.
A number of people had used something like Java or C/C++ before and so I often used that as a
reference frame. No one had ever used a functional-style of programming language like Scheme or
Lisp.

To this day, I still teach the class, known a Biostatistics 140.776 (“Statistical Computing”). However,
the nature of the class has changed quite a bit over the years. The population of students (mostly
first-year graduate students) has shifted to the point where many of them have been introduced to R
as undergraduates. This trend mirrors the overall trend with statistics where we are seeing more and
more students do undergraduate majors in statistics (as opposed to, say, mathematics). Eventually,
by 2008–2009, when I’d asked how many people had heard of or used R before, everyone raised
their hand. However, even at that late date, I still felt the need to convince people that R was a “real”
language that could be used for real tasks.

R has grown a lot in recent years, and is being used in so many places now, that I think it’s
essentially impossible for a person to keep track of everything that is going on. That’s fine, but
it makes “introducing” people to R an interesting experience. Nowadays in class, students are often
teaching me something new about R that I’ve never seen or heard of before (they are quite good
at Googling around for themselves). I feel no need to “bring people over” to R. In fact it’s quite the
opposite–people might start asking questions if I weren’t teaching R.

³http://www.jstatsoft.org/v13/i07
⁴http://www.biostat.jhsph.edu

http://www.jstatsoft.org/v13/i07
http://www.biostat.jhsph.edu/
http://www.jstatsoft.org/v13/i07
http://www.biostat.jhsph.edu/

Preface 4

This book comes frommy experience teaching R in a variety of settings and through different stages
of its (and my) development. Much of the material has been taken from by Statistical Computing
class as well as the R Programming⁵ class I teach through Coursera.

I’m looking forward to teaching R to people as long as people will let me, and I’m interested in
seeing how the next generation of students will approach it (and how my approach to them will
change). Overall, it’s been just an amazing experience to see the widespread adoption of R over the
past decade. I’m sure the next decade will be just as amazing.

⁵https://www.coursera.org/course/rprog

https://www.coursera.org/course/rprog
https://www.coursera.org/course/rprog

3. History and Overview of R
There are only two kinds of languages: the ones people complain about and the ones
nobody uses —Bjarne Stroustrup

Watch a video of this chapter¹

3.1 What is R?

This is an easy question to answer. R is a dialect of S.

3.2 What is S?

S is a language that was developed by John Chambers and others at the old Bell Telephone
Laboratories, originally part of AT&T Corp. S was initiated in 1976² as an internal statistical analysis
environment—originally implemented as Fortran libraries. Early versions of the language did not
even contain functions for statistical modeling.

In 1988 the system was rewritten in C and began to resemble the system that we have today (this
was Version 3 of the language). The book Statistical Models in S by Chambers and Hastie (the white
book) documents the statistical analysis functionality. Version 4 of the S language was released in
1998 and is the version we use today. The book Programming with Data by John Chambers (the
green book) documents this version of the language.

Since the early 90’s the life of the S language has gone down a rather winding path. In 1993 Bell Labs
gave StatSci (later Insightful Corp.) an exclusive license to develop and sell the S language. In 2004
Insightful purchased the S language from Lucent for $2 million. In 2006, Alcatel purchased Lucent
Technologies and is now called Alcatel-Lucent.

Insightful sold its implementation of the S language under the product name S-PLUS and built a
number of fancy features (GUIs, mostly) on top of it—hence the “PLUS”. In 2008 Insightful was
acquired by TIBCO for $25 million. As of this writing TIBCO is the current owner of the S language
and is its exclusive developer.

The fundamentals of the S language itself has not changed dramatically since the publication of the
Green Book by John Chambers in 1998. In 1998, S won the Association for Computing Machinery’s
Software System Award, a highly prestigious award in the computer science field.

¹https://youtu.be/STihTnVSZnI
²http://cm.bell-labs.com/stat/doc/94.11.ps

https://youtu.be/STihTnVSZnI
http://cm.bell-labs.com/stat/doc/94.11.ps
https://youtu.be/STihTnVSZnI
http://cm.bell-labs.com/stat/doc/94.11.ps

History and Overview of R 6

3.3 The S Philosophy

The general S philosophy is important to understand for users of S and R because it sets the stage for
the design of the language itself, which many programming veterans find a bit odd and confusing.
In particular, it’s important to realize that the S language had its roots in data analysis, and did not
come from a traditional programming language background. Its inventors were focused on figuring
out how to make data analysis easier, first for themselves, and then eventually for others.

In Stages in the Evolution of S³, John Chambers writes:

“[W]e wanted users to be able to begin in an interactive environment, where they did not
consciously think of themselves as programming. Then as their needs became clearer and
their sophistication increased, they should be able to slide gradually into programming,
when the language and system aspects would become more important.”

The key part here was the transition from user to developer. They wanted to build a language that
could easily service both “people”. More technically, they needed to build language that would
be suitable for interactive data analysis (more command-line based) as well as for writing longer
programs (more traditional programming language-like).

3.4 Back to R

The R language came to use quite a bit after S had been developed. One key limitation of the S
language was that it was only available in a commericial package, S-PLUS. In 1991, R was created
by Ross Ihaka and Robert Gentleman in the Department of Statistics at the University of Auckland. In
1993 the first announcement of R was made to the public. Ross’s and Robert’s experience developing
R is documented in a 1996 paper in the Journal of Computational and Graphical Statistics:

Ross Ihaka and Robert Gentleman. R: A language for data analysis and graphics. Journal
of Computational and Graphical Statistics, 5(3):299–314, 1996

In 1995, Martin Mächler made an important contribution by convincing Ross and Robert to use the
GNU General Public License⁴ to make R free software. This was critical because it allowed for the
source code for the entire R system to be accessible to anyone who wanted to tinker with it (more
on free software later).

In 1996, a public mailing list was created (the R-help and R-devel lists) and in 1997 the R Core
Group was formed, containing some people associated with S and S-PLUS. Currently, the core group
controls the source code for R and is solely able to check in changes to the main R source tree. Finally,
in 2000 R version 1.0.0 was released to the public.

³http://www.stat.bell-labs.com/S/history.html
⁴http://www.gnu.org/licenses/gpl-2.0.html

http://www.stat.bell-labs.com/S/history.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www.stat.bell-labs.com/S/history.html
http://www.gnu.org/licenses/gpl-2.0.html

History and Overview of R 7

3.5 Basic Features of R

In the early days, a key feature of R was that its syntax is very similar to S, making it easy for
S-PLUS users to switch over. While the R’s syntax is nearly identical to that of S’s, R’s semantics,
while superficially similar to S, are quite different. In fact, R is technically much closer to the Scheme
language than it is to the original S language when it comes to how R works under the hood.

Today R runs on almost any standard computing platform and operating system. Its open source
nature means that anyone is free to adapt the software to whatever platform they choose. Indeed, R
has been reported to be running on modern tablets, phones, PDAs, and game consoles.

One nice feature that R shares with many popular open source projects is frequent releases. These
days there is a major annual release, typically in October, wheremajor new features are incorporated
and released to the public. Throughout the year, smaller-scale bugfix releases will be made as needed.
The frequent releases and regular release cycle indicates active development of the software and
ensures that bugs will be addressed in a timely manner. Of course, while the core developers control
the primary source tree for R, many people around the world make contributions in the form of new
feature, bug fixes, or both.

Another key advantage that R has over many other statistical packages (even today) is its sophisti-
cated graphics capabilities. R’s ability to create “publication quality” graphics has existed since the
very beginning and has generally been better than competing packages. Today, with many more
visualization packages available than before, that trend continues. R’s base graphics system allows
for very fine control over essentially every aspect of a plot or graph. Other newer graphics systems,
like lattice and ggplot2 allow for complex and sophisticated visualizations of high-dimensional data.

R has maintained the original S philosophy, which is that it provides a language that is both useful
for interactive work, but contains a powerful programming language for developing new tools. This
allows the user, who takes existing tools and applies them to data, to slowly but surely become a
developer who is creating new tools.

Finally, one of the joys of using R has nothing to do with the language itself, but rather with the
active and vibrant user community. In many ways, a language is successful inasmuch as it creates a
platform with which many people can create new things. R is that platform and thousands of people
around the world have come together to make contributions to R, to develop packages, and help
each other use R for all kinds of applications. The R-help and R-devel mailing lists have been highly
active for over a decade now and there is considerable activity on web sites like Stack Overflow.

3.6 Free Software

A major advantage that R has over many other statistical packages and is that it’s free in the sense
of free software (it’s also free in the sense of free beer). The copyright for the primary source code
for R is held by the R Foundation⁵ and is published under the GNU General Public License version

⁵http://www.r-project.org/foundation/

http://www.r-project.org/foundation/
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html

History and Overview of R 8

2.0⁶.

According to the Free Software Foundation, with free software, you are granted the following four
freedoms⁷

• The freedom to run the program, for any purpose (freedom 0).
• The freedom to study how the program works, and adapt it to your needs (freedom 1). Access
to the source code is a precondition for this.

• The freedom to redistribute copies so you can help your neighbor (freedom 2).
• The freedom to improve the program, and release your improvements to the public, so that the
whole community benefits (freedom 3). Access to the source code is a precondition for this.

You can visit the Free Software Foundation’s web site⁸ to learn a lot more about free software. The
Free Software Foundation was founded by Richard Stallman in 1985 and Stallman’s personal web
site⁹ is an interesting read if you happen to have some spare time.

3.7 Design of the R System

The primary R system is available from the Comprehensive R Archive Network¹⁰, also known as
CRAN. CRAN also hosts many add-on packages that can be used to extend the functionality of R.

The R system is divided into 2 conceptual parts:

1. The “base” R system that you download from CRAN: Linux¹¹ Windows¹² Mac¹³ Source Code¹⁴
2. Everything else.

R functionality is divided into a number of packages.

• The “base” R system contains, among other things, the base package which is required to run
R and contains the most fundamental functions.

• The other packages contained in the “base” system include utils, stats, datasets, graphics,
grDevices, grid, methods, tools, parallel, compiler, splines, tcltk, stats4.

• There are also “Recommended” packages: boot, class, cluster, codetools, foreign, KernS-
mooth, lattice, mgcv, nlme, rpart, survival, MASS, spatial, nnet, Matrix.

⁶http://www.gnu.org/licenses/gpl-2.0.html
⁷http://www.gnu.org/philosophy/free-sw.html
⁸http://www.fsf.org
⁹https://stallman.org
¹⁰http://cran.r-project.org
¹¹http://cran.r-project.org/bin/linux/
¹²http://cran.r-project.org/bin/windows/
¹³http://cran.r-project.org/bin/macosx/
¹⁴http://cran.r-project.org/src/base/R-3/R-3.1.3.tar.gz

http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html
http://www.fsf.org/
https://stallman.org/
https://stallman.org/
http://cran.r-project.org/
http://cran.r-project.org/bin/linux/
http://cran.r-project.org/bin/windows/
http://cran.r-project.org/bin/macosx/
http://cran.r-project.org/src/base/R-3/R-3.1.3.tar.gz
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/philosophy/free-sw.html
http://www.fsf.org/
https://stallman.org/
http://cran.r-project.org/
http://cran.r-project.org/bin/linux/
http://cran.r-project.org/bin/windows/
http://cran.r-project.org/bin/macosx/
http://cran.r-project.org/src/base/R-3/R-3.1.3.tar.gz

History and Overview of R 9

When you download a fresh installation of R from CRAN, you get all of the above, which represents
a substantial amount of functionality. However, there are many other packages available:

• There are over 4000 packages on CRAN that have been developed by users and programmers
around the world.

• There are also many packages associated with the Bioconductor project¹⁵.
• People often make packages available on their personal websites; there is no reliable way to
keep track of how many packages are available in this fashion.

• There are a number of packages being developed on repositories like GitHub and BitBucket but
there is no reliable listing of all these packages.

3.8 Limitations of R

No programming language or statistical analysis system is perfect. R certainly has a number of
drawbacks. For starters, R is essentially based on almost 50 year old technology, going back to the
original S system developed at Bell Labs. There was originally little built in support for dynamic or
3-D graphics (but things have improved greatly since the “old days”).

Another commonly cited limitation of R is that objects must generally be stored in physical memory.
This is in part due to the scoping rules of the language, but R generally is more of a memory hog
than other statistical packages. However, there have been a number of advancements to deal with
this, both in the R core and also in a number of packages developed by contributors. Also, computing
power and capacity has continued to grow over time and amount of physical memory that can be
installed on even a consumer-level laptop is substantial. While we will likely never have enough
physical memory on a computer to handle the increasingly large datasets that are being generated,
the situation has gotten quite a bit easier over time.

At a higher level one “limitation” of R is that its functionality is based on consumer demand and
(voluntary) user contributions. If no one feels like implementing your favorite method, then it’s your
job to implement it (or you need to pay someone to do it). The capabilities of the R system generally
reflect the interests of the R user community. As the community has ballooned in size over the past
10 years, the capabilities have similarly increased. When I first started using R, there was very little
in the way of functionality for the physical sciences (physics, astronomy, etc.). However, now some
of those communities have adopted R and we are seeing more code being written for those kinds of
applications.

If you want to knowmy general views on the usefulness of R, you can see them here in the following
exchange on the R-help mailing list with Douglas Bates and Brian Ripley in June 2004:

Roger D. Peng: I don’t think anyone actually believes that R is designed to make everyone
happy. For me, R does about 99% of the things I need to do, but sadly, when I need to order
a pizza, I still have to pick up the telephone.

¹⁵http://bioconductor.org

http://bioconductor.org/
http://bioconductor.org/

History and Overview of R 10

Douglas Bates: There are several chains of pizzerias in the U.S. that provide for Internet-
based ordering (e.g. www.papajohnsonline.com) so, with the Internet modules in R, it’s
only a matter of time before you will have a pizza-ordering function available.

Brian D. Ripley: Indeed, the GraphApp toolkit (used for the RGui interface under R for
Windows, but Guido forgot to include it) provides one (for use in Sydney, Australia, we
presume as that is where the GraphApp author hails from). Alternatively, a Padovian has
no need of ordering pizzas with both home and neighbourhood restaurants ….

At this point in time, I think it would be fairly straightforward to build a pizza ordering R package
using something like the RCurl or httr packages. Any takers?

3.9 R Resources

Official Manuals

As far as getting started with R by reading stuff, there is of course this book. Also, available from
CRAN¹⁶ are

• An Introduction to R¹⁷
• R Data Import/Export¹⁸
• Writing R Extensions¹⁹: Discusses how to write and organize R packages
• R Installation and Administration²⁰: This is mostly for building R from the source code)
• R Internals²¹: This manual describes the low level structure of R and is primarily for developers
and R core members

• R Language Definition²²: This documents the R language and, again, is primarily for developers

Useful Standard Texts on S and R

• Chambers (2008). Software for Data Analysis, Springer
• Chambers (1998). Programming with Data, Springer: This book is not about R, but it describes
the organization and philosophy of the current version of the S language, and is a useful
reference.

• Venables & Ripley (2002).ModernApplied Statistics with S, Springer: This is a standard textbook
in statistics and describes how to use many statistical methods in R. This book has an associated
R package (the MASS package) that comes with every installation of R.

¹⁶http://cran.r-project.org
¹⁷http://cran.r-project.org/doc/manuals/r-release/R-intro.html
¹⁸http://cran.r-project.org/doc/manuals/r-release/R-data.html
¹⁹http://cran.r-project.org/doc/manuals/r-release/R-exts.html
²⁰http://cran.r-project.org/doc/manuals/r-release/R-admin.html
²¹http://cran.r-project.org/doc/manuals/r-release/R-ints.html
²²http://cran.r-project.org/doc/manuals/r-release/R-lang.html

http://cran.r-project.org/
http://cran.r-project.org/doc/manuals/r-release/R-intro.html
http://cran.r-project.org/doc/manuals/r-release/R-data.html
http://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://cran.r-project.org/doc/manuals/r-release/R-admin.html
http://cran.r-project.org/doc/manuals/r-release/R-ints.html
http://cran.r-project.org/doc/manuals/r-release/R-lang.html
http://cran.r-project.org/
http://cran.r-project.org/doc/manuals/r-release/R-intro.html
http://cran.r-project.org/doc/manuals/r-release/R-data.html
http://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://cran.r-project.org/doc/manuals/r-release/R-admin.html
http://cran.r-project.org/doc/manuals/r-release/R-ints.html
http://cran.r-project.org/doc/manuals/r-release/R-lang.html

History and Overview of R 11

• Venables & Ripley (2000). S Programming, Springer: This book is a little old but is still relevant
and accurate. Despite its title, this book is useful for R also.

• Murrell (2005). RGraphics, Chapman&Hall/CRC Press: PaulMurrell wrote and designedmuch
of the graphics system in R and this book essentially documents the underlying details. This
is not so much a “user-level” book as a developer-level book. But it is an important book for
anyone interested in designing new types of graphics or visualizations.

• Wickham (2014). Advanced R, Chapman & Hall/CRC Press: This book by Hadley Wickham
covers a number of areas including object-oriented programming, functional programming,
profiling and other advanced topics.

Other Resources

• Major technical publishers like Springer, Chapman & Hall/CRC have entire series of books
dedicated to using R in various applications. For example, Springer has a series of books called
Use R!.

• A longer list of books can be found on the CRAN web site²³.

²³http://www.r-project.org/doc/bib/R-books.html

http://www.r-project.org/doc/bib/R-books.html
http://www.r-project.org/doc/bib/R-books.html

4. Getting Started with R
4.1 Installation

The first thing you need to do to get started with R is to install it on your computer. R works on
pretty much every platform available, including the widely available Windows, Mac OS X, and
Linux systems. If you want to watch a step-by-step tutorial on how to install R for Mac or Windows,
you can watch these videos:

• Installing R on Windows¹
• Installing R on the Mac²

There is also an integrated development environment available for R that is built by RStudio. I really
like this IDE—it has a nice editor with syntax highlighting, there is an R object viewer, and there are
a number of other nice features that are integrated. You can see how to install RStudio here

• Installing RStudio³

The RStudio IDE is available from RStudio’s web site⁴.

4.2 Getting started with the R interface

After you install R you will need to launch it and start writing R code. Before we get to exactly how
to write R code, it’s useful to get a sense of how the system is organized. In these two videos I talk
about where to write code and how set your working directory, which let’s R know where to find
all of your files.

• Writing code and setting your working directory on the Mac⁵
• Writing code and setting your working directory on Windows⁶

¹http://youtu.be/Ohnk9hcxf9M
²https://youtu.be/uxuuWXU-7UQ
³https://youtu.be/bM7Sfz-LADM
⁴http://rstudio.com
⁵https://youtu.be/8xT3hmJQskU
⁶https://youtu.be/XBcvH1BpIBo

qtabt
Highlight

http://youtu.be/Ohnk9hcxf9M
https://youtu.be/uxuuWXU-7UQ
https://youtu.be/bM7Sfz-LADM
http://rstudio.com/
https://youtu.be/8xT3hmJQskU
https://youtu.be/XBcvH1BpIBo
http://youtu.be/Ohnk9hcxf9M
https://youtu.be/uxuuWXU-7UQ
https://youtu.be/bM7Sfz-LADM
http://rstudio.com/
https://youtu.be/8xT3hmJQskU
https://youtu.be/XBcvH1BpIBo

5. R Nuts and Bolts
5.1 Entering Input

Watch a video of this section¹

At the R prompt we type expressions. The <- symbol is the assignment operator.

> x <- 1

> print(x)

[1] 1

> x

[1] 1

> msg <- "hello"

The grammar of the language determines whether an expression is complete or not.

x <- ## Incomplete expression

The # character indicates a comment. Anything to the right of the # (including the # itself) is ignored.
This is the only comment character in R. Unlike some other languages, R does not support multi-line
comments or comment blocks.

5.2 Evaluation

When a complete expression is entered at the prompt, it is evaluated and the result of the evaluated
expression is returned. The result may be auto-printed.

> x <- 5 ## nothing printed

> x ## auto-printing occurs

[1] 5

> print(x) ## explicit printing

[1] 5

The [1] shown in the output indicates that x is a vector and 5 is its first element.

Typically with interactive work, we do not explicitly print objects with the print function; it is much
easier to just auto-print them by typing the name of the object and hitting return/enter. However,

¹https://youtu.be/vGY5i_J2c-c?t=4m43s

https://youtu.be/vGY5i_J2c-c?t=4m43s
https://youtu.be/vGY5i_J2c-c?t=4m43s

R Nuts and Bolts 14

when writing scripts, functions, or longer programs, there is sometimes a need to explicitly print
objects because auto-printing does not work in those settings.

When an R vector is printed you will notice that an index for the vector is printed in square brackets
[] on the side. For example, see this integer sequence of length 20.

> x <- 11:30

> x

[1] 11 12 13 14 15 16 17 18 19 20 21 22

[13] 23 24 25 26 27 28 29 30

The numbers in the square brackets are not part of the vector itself, they are merely part of the
printed output.

With R, it’s important that one understand that there is a difference between the actual R object
and the manner in which that R object is printed to the console. Often, the printed output may have
additional bells and whistles to make the output more friendly to the users. However, these bells and
whistles are not inherently part of the object.

Note that the : operator is used to create integer sequences.

5.3 R Objects

Watch a video of this section²

R has five basic or “atomic” classes of objects:

• character
• numeric (real numbers)
• integer
• complex
• logical (True/False)

The most basic type of R object is a vector. Empty vectors can be created with the vector() function.
There is really only one rule about vectors in R, which is that A vector can only contain objects
of the same class.

But of course, like any good rule, there is an exception, which is a list, which we will get to a bit later.
A list is represented as a vector but can contain objects of different classes. Indeed, that’s usually
why we use them.

There is also a class for “raw” objects, but they are not commonly used directly in data analysis and
I won’t cover them here.

²https://youtu.be/vGY5i_J2c-c

https://youtu.be/vGY5i_J2c-c
https://youtu.be/vGY5i_J2c-c

R Nuts and Bolts 15

5.4 Numbers

Numbers in R are generally treated as numeric objects (i.e. double precision real numbers). This
means that even if you see a number like “1” or “2” in R, which you might think of as integers, they
are likely represented behind the scenes as numeric objects (so something like “1.00” or “2.00”). This
isn’t important most of the time…except when it is.

If you explicitly want an integer, you need to specify the L suffix. So entering 1 in R gives you a
numeric object; entering 1L explicitly gives you an integer object.

There is also a special number Inf which represents infinity. This allows us to represent entities like
1 / 0. This way, Inf can be used in ordinary calculations; e.g. 1 / Inf is 0.

The value NaN represents an undefined value (“not a number”); e.g. 0 / 0; NaN can also be thought of
as a missing value (more on that later)

5.5 Attributes

R objects can have attributes, which are like metadata for the object. These metadata can be very
useful in that they help to describe the object. For example, column names on a data frame help to
tell us what data are contained in each of the columns. Some examples of R object attributes are

• names, dimnames
• dimensions (e.g. matrices, arrays)
• class (e.g. integer, numeric)
• length
• other user-defined attributes/metadata

Attributes of an object (if any) can be accessed using the attributes() function. Not all R objects
contain attributes, in which case the attributes() function returns NULL.

5.6 Creating Vectors

Watch a video of this section³

The c() function can be used to create vectors of objects by concatenating things together.

³https://youtu.be/w8_XdYI3reU

qtabt
Highlight

https://youtu.be/w8_XdYI3reU
https://youtu.be/w8_XdYI3reU

R Nuts and Bolts 16

> x <- c(0.5, 0.6) ## numeric

> x <- c(TRUE, FALSE) ## logical

> x <- c(T, F) ## logical

> x <- c("a", "b", "c") ## character

> x <- 9:29 ## integer

> x <- c(1+0i, 2+4i) ## complex

Note that in the above example, T and F are short-hand ways to specify TRUE and FALSE. However,
in general one should try to use the explicit TRUE and FALSE values when indicating logical values.
The T and F values are primarily there for when you’re feeling lazy.

You can also use the vector() function to initialize vectors.

> x <- vector("numeric", length = 10)

> x

[1] 0 0 0 0 0 0 0 0 0 0

5.7 Mixing Objects

There are occasions when different classes of R objects get mixed together. Sometimes this happens
by accident but it can also happen on purpose. So what happens with the following code?

> y <- c(1.7, "a") ## character

> y <- c(TRUE, 2) ## numeric

> y <- c("a", TRUE) ## character

In each case above, we are mixing objects of two different classes in a vector. But remember that
the only rule about vectors says this is not allowed. When different objects are mixed in a vector,
coercion occurs so that every element in the vector is of the same class.

In the example above, we see the effect of implicit coercion. What R tries to do is find a way to
represent all of the objects in the vector in a reasonable fashion. Sometimes this does exactly what
you want and…sometimes not. For example, combining a numeric object with a character object
will create a character vector, because numbers can usually be easily represented as strings.

5.8 Explicit Coercion

Objects can be explicitly coerced from one class to another using the as.* functions, if available.

R Nuts and Bolts 17

> x <- 0:6

> class(x)

[1] "integer"

> as.numeric(x)

[1] 0 1 2 3 4 5 6

> as.logical(x)

[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE

> as.character(x)

[1] "0" "1" "2" "3" "4" "5" "6"

Sometimes, R can’t figure out how to coerce an object and this can result in NAs being produced.

> x <- c("a", "b", "c")

> as.numeric(x)

Warning: NAs introduced by coercion

[1] NA NA NA

> as.logical(x)

[1] NA NA NA

> as.complex(x)

Warning: NAs introduced by coercion

[1] NA NA NA

When nonsensical coercion takes place, you will usually get a warning from R.

5.9 Matrices

Matrices are vectors with a dimension attribute. The dimension attribute is itself an integer vector
of length 2 (number of rows, number of columns)

> m <- matrix(nrow = 2, ncol = 3)

> m

[,1] [,2] [,3]

[1,] NA NA NA

[2,] NA NA NA

> dim(m)

[1] 2 3

> attributes(m)

$dim

[1] 2 3

Matrices are constructed column-wise, so entries can be thought of starting in the “upper left” corner
and running down the columns.

R Nuts and Bolts 18

> m <- matrix(1:6, nrow = 2, ncol = 3)

> m

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Matrices can also be created directly from vectors by adding a dimension attribute.

> m <- 1:10

> m

[1] 1 2 3 4 5 6 7 8 9 10

> dim(m) <- c(2, 5)

> m

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

Matrices can be created by column-binding or row-binding with the cbind() and rbind() functions.

> x <- 1:3

> y <- 10:12

> cbind(x, y)

x y

[1,] 1 10

[2,] 2 11

[3,] 3 12

> rbind(x, y)

[,1] [,2] [,3]

x 1 2 3

y 10 11 12

5.10 Lists

Lists are a special type of vector that can contain elements of different classes. Lists are a very
important data type in R and you should get to know them well. Lists, in combination with the
various “apply” functions discussed later, make for a powerful combination.

Lists can be explicitly created using the list() function, which takes an arbitrary number of
arguments.

R Nuts and Bolts 19

> x <- list(1, "a", TRUE, 1 + 4i)

> x

[[1]]

[1] 1

[[2]]

[1] "a"

[[3]]

[1] TRUE

[[4]]

[1] 1+4i

We can also create an empty list of a prespecified length with the vector() function

> x <- vector("list", length = 5)

> x

[[1]]

NULL

[[2]]

NULL

[[3]]

NULL

[[4]]

NULL

[[5]]

NULL

5.11 Factors

Watch a video of this section⁴

Factors are used to represent categorical data and can be unordered or ordered. One can think of
a factor as an integer vector where each integer has a label. Factors are important in statistical
modeling and are treated specially by modelling functions like lm() and glm().

Using factors with labels is better than using integers because factors are self-describing. Having a
variable that has values “Male” and “Female” is better than a variable that has values 1 and 2.

Factor objects can be created with the factor() function.

⁴https://youtu.be/NuY6jY4qE7I

https://youtu.be/NuY6jY4qE7I
https://youtu.be/NuY6jY4qE7I

R Nuts and Bolts 20

> x <- factor(c("yes", "yes", "no", "yes", "no"))

> x

[1] yes yes no yes no

Levels: no yes

> table(x)

x

no yes

2 3

> ## See the underlying representation of factor

> unclass(x)

[1] 2 2 1 2 1

attr(,"levels")

[1] "no" "yes"

Often factors will be automatically created for you when you read a dataset in using a function like
read.table(). Those functions often default to creating factors when they encounter data that look
like characters or strings.

The order of the levels of a factor can be set using the levels argument to factor(). This can be
important in linear modelling because the first level is used as the baseline level.

> x <- factor(c("yes", "yes", "no", "yes", "no"))

> x ## Levels are put in alphabetical order

[1] yes yes no yes no

Levels: no yes

> x <- factor(c("yes", "yes", "no", "yes", "no"),

+ levels = c("yes", "no"))

> x

[1] yes yes no yes no

Levels: yes no

5.12 Missing Values

Missing values are denoted by NA or NaN for q undefined mathematical operations.

• is.na() is used to test objects if they are NA
• is.nan() is used to test for NaN
• NA values have a class also, so there are integer NA, character NA, etc.
• A NaN value is also NA but the converse is not true

R Nuts and Bolts 21

> ## Create a vector with NAs in it

> x <- c(1, 2, NA, 10, 3)

> ## Return a logical vector indicating which elements are NA

> is.na(x)

[1] FALSE FALSE TRUE FALSE FALSE

> ## Return a logical vector indicating which elements are NaN

> is.nan(x)

[1] FALSE FALSE FALSE FALSE FALSE

> ## Now create a vector with both NA and NaN values

> x <- c(1, 2, NaN, NA, 4)

> is.na(x)

[1] FALSE FALSE TRUE TRUE FALSE

> is.nan(x)

[1] FALSE FALSE TRUE FALSE FALSE

5.13 Data Frames

Data frames are used to store tabular data in R. They are an important type of object in R and
are used in a variety of statistical modeling applications. Hadley Wickham’s package dplyr⁵ has an
optimized set of functions designed to work efficiently with data frames.

Data frames are represented as a special type of list where every element of the list has to have the
same length. Each element of the list can be thought of as a column and the length of each element
of the list is the number of rows.

Unlike matrices, data frames can store different classes of objects in each column. Matrices must
have every element be the same class (e.g. all integers or all numeric).

In addition to column names, indicating the names of the variables or predictors, data frames have
a special attribute called row.names which indicate information about each row of the data frame.

Data frames are usually created by reading in a dataset using the read.table() or read.csv().
However, data frames can also be created explicitly with the data.frame() function or they can be
coerced from other types of objects like lists.

Data frames can be converted to a matrix by calling data.matrix(). While it might seem that the
as.matrix() function should be used to coerce a data frame to a matrix, almost always, what you
want is the result of data.matrix().

⁵https://github.com/hadley/dplyr

https://github.com/hadley/dplyr
https://github.com/hadley/dplyr

R Nuts and Bolts 22

> x <- data.frame(foo = 1:4, bar = c(T, T, F, F))

> x

foo bar

1 1 TRUE

2 2 TRUE

3 3 FALSE

4 4 FALSE

> nrow(x)

[1] 4

> ncol(x)

[1] 2

5.14 Names

R objects can have names, which is very useful for writing readable code and self-describing objects.
Here is an example of assigning names to an integer vector.

> x <- 1:3

> names(x)

NULL

> names(x) <- c("New York", "Seattle", "Los Angeles")

> x

New York Seattle Los Angeles

1 2 3

> names(x)

[1] "New York" "Seattle" "Los Angeles"

Lists can also have names, which is often very useful.

> x <- list("Los Angeles" = 1, Boston = 2, London = 3)

> x

$`Los Angeles`

[1] 1

$Boston

[1] 2

$London

[1] 3

> names(x)

[1] "Los Angeles" "Boston" "London"

Matrices can have both column and row names.

R Nuts and Bolts 23

> m <- matrix(1:4, nrow = 2, ncol = 2)

> dimnames(m) <- list(c("a", "b"), c("c", "d"))

> m

c d

a 1 3

b 2 4

Column names and row names can be set separately using the colnames() and rownames() functions.

> colnames(m) <- c("h", "f")

> rownames(m) <- c("x", "z")

> m

h f

x 1 3

z 2 4

Note that for data frames, there is a separate function for setting the row names, the row.names()
function. Also, data frames do not have column names, they just have names (like lists). So to set
the column names of a data frame just use the names() function. Yes, I know its confusing. Here’s a
quick summary:

Object Set column names Set row names
data frame names() row.names()

matrix colnames() rownames()

5.15 Summary

There are a variety of different builtin-data types in R. In this chapter we have reviewed the following

• atomic classes: numeric, logical, character, integer, complex
• vectors, lists
• factors
• missing values
• data frames and matrices

All R objects can have attributes that help to describe what is in the object. Perhaps the most useful
attribute is names, such as column and row names in a data frame, or simply names in a vector or
list. Attributes like dimensions are also important as they can modify the behavior of objects, like
turning a vector into a matrix.

6. Getting Data In and Out of R
6.1 Reading and Writing Data

Watch a video of this section¹

There are a few principal functions reading data into R.

• read.table, read.csv, for reading tabular data
• readLines, for reading lines of a text file
• source, for reading in R code files (inverse of dump)
• dget, for reading in R code files (inverse of dput)
• load, for reading in saved workspaces
• unserialize, for reading single R objects in binary form

There are of course, many R packages that have been developed to read in all kinds of other datasets,
and you may need to resort to one of these packages if you are working in a specific area.

There are analogous functions for writing data to files

• write.table, for writing tabular data to text files (i.e. CSV) or connections
• writeLines, for writing character data line-by-line to a file or connection
• dump, for dumping a textual representation of multiple R objects
• dput, for outputting a textual representation of an R object
• save, for saving an arbitrary number of R objects in binary format (possibly compressed) to a
file.

• serialize, for converting an R object into a binary format for outputting to a connection (or
file).

6.2 Reading Data Files with read.table()

The read.table() function is one of the most commonly used functions for reading data. The help
file for read.table() is worth reading in its entirety if only because the function gets used a lot (run
?read.table in R). I know, I know, everyone always says to read the help file, but this one is actually
worth reading.

The read.table() function has a few important arguments:

¹https://youtu.be/Z_dc_FADyi4

https://youtu.be/Z_dc_FADyi4
https://youtu.be/Z_dc_FADyi4

Getting Data In and Out of R 25

• file, the name of a file, or a connection
• header, logical indicating if the file has a header line
• sep, a string indicating how the columns are separated
• colClasses, a character vector indicating the class of each column in the dataset
• nrows, the number of rows in the dataset. By default read.table() reads an entire file.
• comment.char, a character string indicating the comment character. This defalts to "#". If there
are no commented lines in your file, it’s worth setting this to be the empty string "".

• skip, the number of lines to skip from the beginning
• stringsAsFactors, should character variables be coded as factors? This defaults to TRUE

because back in the old days, if you had data that were stored as strings, it was because
those strings represented levels of a categorical variable. Now we have lots of data that is
text data and they don’t always represent categorical variables. So you may want to set this to
be FALSE in those cases. If you always want this to be FALSE, you can set a global option via
options(stringsAsFactors = FALSE). I’ve never seen so much heat generated on discussion
forums about an R function argument than the stringsAsFactors argument. Seriously.

For small to moderately sized datasets, you can usually call read.table without specifying any other
arguments

> data <- read.table("foo.txt")

In this case, R will automatically

• skip lines that begin with a #
• figure out how many rows there are (and how much memory needs to be allocated)
• figure what type of variable is in each column of the table.

Telling R all these things directly makes R run faster and more efficiently. The read.csv() function
is identical to read.table except that some of the defaults are set differently (like the sep argument).

6.3 Reading in Larger Datasets with read.table

Watch a video of this section²

With much larger datasets, there are a few things that you can do that will make your life easier and
will prevent R from choking.

• Read the help page for read.table, which contains many hints
• Make a rough calculation of the memory required to store your dataset (see the next section
for an example of how to do this). If the dataset is larger than the amount of RAM on your
computer, you can probably stop right here.

²https://youtu.be/BJYYIJO3UFI

https://youtu.be/BJYYIJO3UFI
https://youtu.be/BJYYIJO3UFI

Getting Data In and Out of R 26

• Set comment.char = "" if there are no commented lines in your file.
• Use the colClasses argument. Specifying this option instead of using the default can make
’read.table’ run MUCH faster, often twice as fast. In order to use this option, you have to know
the class of each column in your data frame. If all of the columns are “numeric”, for example,
then you can just set colClasses = "numeric". A quick an dirty way to figure out the classes
of each column is the following:

> initial <- read.table("datatable.txt", nrows = 100)

> classes <- sapply(initial, class)

> tabAll <- read.table("datatable.txt", colClasses = classes)

• Set nrows. This doesn’t make R run faster but it helps with memory usage. A mild overestimate
is okay. You can use the Unix tool wc to calculate the number of lines in a file.

In general, when using R with larger datasets, it’s also useful to know a few things about your
system.

• How much memory is available on your system?
• What other applications are in use? Can you close any of them?
• Are there other users logged into the same system?
• What operating system ar you using? Some operating systems can limit the amount of memory
a single process can access

6.4 Calculating Memory Requirements for R Objects

Because R stores all of its objects physical memory, it is important to be cognizant of how much
memory is being used up by all of the data objects residing in your workspace. One situation where
it’s particularly important to understand memory requirements is when you are reading in a new
dataset into R. Fortunately, it’s easy tomake a back of the envelope calculation of howmuchmemory
will be required by a new dataset.

For example, suppose I have a data frame with 1,500,000 rows and 120 columns, all of which are
numeric data. Roughly, how much memory is required to store this data frame? Well, on most
modern computers double precision floating point numbers³ are stored using 64 bits of memory, or
8 bytes. Given that information, you can do the following calculation

³http://en.wikipedia.org/wiki/Double-precision_floating-point_format

http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format

Getting Data In and Out of R 27

1,500,000 × 120 × 8 bytes/numeric = 1,440,000,000 bytes
= 1,440,000,000 / 2²⁰ bytes/MB
= 1,373.29 MB
= 1.34 GB

So the dataset would require about 1.34 GB of RAM. Most computers these days have at least that
much RAM. However, you need to be aware of

• what other programs might be running on your computer, using up RAM
• what other R objects might already be taking up RAM in your workspace

Reading in a large dataset for which you do not have enough RAM is one easy way to freeze up
your computer (or at least your R session). This is usually an unpleasant experience that usually
requires you to kill the R process, in the best case scenario, or reboot your computer, in the worst
case. So make sure to do a rough calculation of memeory requirements before reading in a large
dataset. You’ll thank me later.

7. Using the readr Package
The readr package is recently developed by Hadley Wickham to deal with reading in large flat files
quickly. The package provides replacements for functions like read.table() and read.csv(). The
analogous functions in readr are read_table() and read_csv(). These functions are often much
faster than their base R analogues and provide a few other nice features such as progress meters.

For the most part, you can read use read_table() and read_csv() pretty much anywhere you might
use read.table() and read.csv(). In addition, if there are non-fatal problems that occur while
reading in the data, you will get a warning and the returned data frame will have some information
about which rows/observations triggered the warning. This can be very helpful for “debugging”
problems with your data before you get neck deep in data analysis.

The importance of the read_csv function is perhaps better understood from an historical perspective.
R’s built in read.csv function similarly reads CSV files, but the read_csv function in readr builds on
that by removing some of the quirks and “gotchas” of read.csv as well as dramatically optimizing
the speed with which it can read data into R. The read_csv function also adds some nice user-
oriented features like a progress meter and a compact method for specifying column types.

A typical call to read_csv will look as follows.

> library(readr)

> teams <- read_csv("data/team_standings.csv")

Rows: 32 Columns: 2

── Column specification ──\

──

Delimiter: ","

chr (1): Team

dbl (1): Standing

� Use `spec()` to retrieve the full column specification for this data.

� Specify the column types or set `show_col_types = FALSE` to quiet this message.

> teams

A tibble: 32 × 2

Standing Team

<dbl> <chr>

1 1 Spain

2 2 Netherlands

3 3 Germany

4 4 Uruguay

5 5 Argentina

6 6 Brazil

7 7 Ghana

Using the readr Package 29

8 8 Paraguay

9 9 Japan

10 10 Chile

… with 22 more rows

By default, read_csv will open a CSV file and read it in line-by-line. It will also (by default), read in
the first few rows of the table in order to figure out the type of each column (i.e. integer, character,
etc.). From the read_csv help page:

If ‘NULL’, all column types will be imputed from the first 1000 rows on the input. This
is convenient (and fast), but not robust. If the imputation fails, you’ll need to supply the
correct types yourself.

You can specify the type of each column with the col_types argument.

In general, it’s a good idea to specify the column types explicitly. This rules out any possible guessing
errors on the part of read_csv. Also, specifying the column types explicitly provides a useful safety
check in case anything about the dataset should change without you knowing about it.

> teams <- read_csv("data/team_standings.csv", col_types = "cc")

Note that the col_types argument accepts a compact representation. Here "cc" indicates that the
first column is character and the second column is character (there are only two columns). Using
the col_types argument is useful because often it is not easy to automatically figure out the type of
a column by looking at a few rows (especially if a column has many missing values).

The read_csv function will also read compressed files automatically. There is no need to decompress
the file first or use the gzfile connection function. The following call reads a gzip-compressed CSV
file containing download logs from the RStudio CRAN mirror.

> logs <- read_csv("data/2016-07-19.csv.bz2", n_max = 10)

Rows: 10 Columns: 10

── Column specification ──\

──

Delimiter: ","

chr (6): r_version, r_arch, r_os, package, version, country

dbl (2): size, ip_id

date (1): date

time (1): time

� Use `spec()` to retrieve the full column specification for this data.

� Specify the column types or set `show_col_types = FALSE` to quiet this message.

Note that the warnings indicate that read_csvmay have had some difficulty identifying the type of
each column. This can be solved by using the col_types argument.

Using the readr Package 30

> logs <- read_csv("data/2016-07-19.csv.bz2", col_types = "ccicccccci", n_max = 10)

> logs

A tibble: 10 × 10

date time size r_version r_arch r_os package version country ip_id

<chr> <chr> <int> <chr> <chr> <chr> <chr> <chr> <chr> <int>

1 2016-07-19 22:00… 1.89e6 3.3.0 x86_64 ming… data.t… 1.9.6 US 1

2 2016-07-19 22:00… 4.54e4 3.3.1 x86_64 ming… assert… 0.1 US 2

3 2016-07-19 22:00… 1.43e7 3.3.1 x86_64 ming… stringi 1.1.1 DE 3

4 2016-07-19 22:00… 1.89e6 3.3.1 x86_64 ming… data.t… 1.9.6 US 4

5 2016-07-19 22:00… 3.90e5 3.3.1 x86_64 ming… foreach 1.4.3 US 4

6 2016-07-19 22:00… 4.88e4 3.3.1 x86_64 linu… tree 1.0-37 CO 5

7 2016-07-19 22:00… 5.25e2 3.3.1 x86_64 darw… surviv… 2.39-5 US 6

8 2016-07-19 22:00… 3.23e6 3.3.1 x86_64 ming… Rcpp 0.12.5 US 2

9 2016-07-19 22:00… 5.56e5 3.3.1 x86_64 ming… tibble 1.1 US 2

10 2016-07-19 22:00… 1.52e5 3.3.1 x86_64 ming… magrit… 1.5 US 2

You can specify the column type in a more detailed fashion by using the various col_* functions.
For example, in the log data above, the first column is actually a date, so it might make more sense
to read it in as a Date variable. If we wanted to just read in that first column, we could do

> logdates <- read_csv("data/2016-07-19.csv.bz2",

+ col_types = cols_only(date = col_date()),

+ n_max = 10)

> logdates

A tibble: 10 × 1

date

<date>

1 2016-07-19

2 2016-07-19

3 2016-07-19

4 2016-07-19

5 2016-07-19

6 2016-07-19

7 2016-07-19

8 2016-07-19

9 2016-07-19

10 2016-07-19

Now the date column is stored as a Date object which can be used for relevant date-related
computations (for example, see the lubridate package).

The read_csv function has a progress option that defaults to TRUE. This options provides a nice
progress meter while the CSV file is being read. However, if you are using read_csv in a function,

Using the readr Package 31

or perhaps embedding it in a loop, it’s probably best to set progress = FALSE.

8. Using Textual and Binary Formats
for Storing Data

Watch a video of this chapter¹

There are a variety of ways that data can be stored, including structured text files like CSV or tab-
delimited, or more complex binary formats. However, there is an intermediate format that is textual,
but not as simple as something like CSV. The format is native to R and is somewhat readable because
of its textual nature.

One can create a more descriptive representation of an R object by using the dput() or dump()

functions. The dump() and dput() functions are useful because the resulting textual format is edit-
able, and in the case of corruption, potentially recoverable. Unlike writing out a table or CSV file,
dump() and dput() preserve themetadata (sacrificing some readability), so that another user doesn’t
have to specify it all over again. For example, we can preserve the class of each column of a table or
the levels of a factor variable.

Textual formats can work much better with version control programs like subversion or git which
can only track changes meaningfully in text files. In addition, textual formats can be longer-lived;
if there is corruption somewhere in the file, it can be easier to fix the problem because one can just
open the file in an editor and look at it (although this would probably only be done in a worst case
scenario!). Finally, textual formats adhere to the Unix philosophy², if that means anything to you.

There are a few downsides to using these intermediate textual formats. The format is not very space-
efficient, because all of the metadata is specified. Also, it is really only partially readable. In some
instances it might be preferable to have data stored in a CSV file and then have a separate code file
that specifies the metadata.

8.1 Using dput() and dump()

One way to pass data around is by deparsing the R object with dput() and reading it back in (parsing
it) using dget().

¹https://youtu.be/5mIPigbNDfk
²http://www.catb.org/esr/writings/taoup/

https://youtu.be/5mIPigbNDfk
http://www.catb.org/esr/writings/taoup/
https://youtu.be/5mIPigbNDfk
http://www.catb.org/esr/writings/taoup/

Using Textual and Binary Formats for Storing Data 33

> ## Create a data frame

> y <- data.frame(a = 1, b = "a")

> ## Print 'dput' output to console

> dput(y)

structure(list(a = 1, b = "a"), class = "data.frame", row.names = c(NA,

-1L))

Notice that the dput() output is in the form of R code and that it preserves metadata like the class
of the object, the row names, and the column names.

The output of dput() can also be saved directly to a file.

> ## Send 'dput' output to a file

> dput(y, file = "y.R")

> ## Read in 'dput' output from a file

> new.y <- dget("y.R")

> new.y

a b

1 1 a

Multiple objects can be deparsed at once using the dump function and read back in using source.

> x <- "foo"

> y <- data.frame(a = 1L, b = "a")

We can dump() R objects to a file by passing a character vector of their names.

> dump(c("x", "y"), file = "data.R")

> rm(x, y)

The inverse of dump() is source().

> source("data.R")

> str(y)

'data.frame': 1 obs. of 2 variables:

$ a: int 1

$ b: chr "a"

> x

[1] "foo"

Using Textual and Binary Formats for Storing Data 34

8.2 Binary Formats

The complement to the textual format is the binary format, which is sometimes necessary to use
for efficiency purposes, or because there’s just no useful way to represent data in a textual manner.
Also, with numeric data, one can often lose precision when converting to and from a textual format,
so it’s better to stick with a binary format.

The key functions for converting R objects into a binary format are save(), save.image(), and
serialize(). Individual R objects can be saved to a file using the save() function.

> a <- data.frame(x = rnorm(100), y = runif(100))

> b <- c(3, 4.4, 1 / 3)

>

> ## Save 'a' and 'b' to a file

> save(a, b, file = "mydata.rda")

>

> ## Load 'a' and 'b' into your workspace

> load("mydata.rda")

If you have a lot of objects that you want to save to a file, you can save all objects in your workspace
using the save.image() function.

> ## Save everything to a file

> save.image(file = "mydata.RData")

>

> ## load all objects in this file

> load("mydata.RData")

Notice that I’ve used the .rda extension when using save() and the .RData extension when using
save.image(). This is just my personal preference; you can use whatever file extension you want.
The save() and save.image() functions do not care. However, .rda and .RData are fairly common
extensions and you may want to use them because they are recognized by other software.

The serialize() function is used to convert individual R objects into a binary format that can be
communicated across an arbitrary connection. This may get sent to a file, but it could get sent over
a network or other connection.

When you call serialize() on an R object, the output will be a raw vector coded in hexadecimal
format.

Using Textual and Binary Formats for Storing Data 35

> x <- list(1, 2, 3)

> serialize(x, NULL)

[1] 58 0a 00 00 00 03 00 04 02 00 00 03 05 00 00 00 00 05 55 54 46 2d 38 00 00

[26] 00 13 00 00 00 03 00 00 00 0e 00 00 00 01 3f f0 00 00 00 00 00 00 00 00 00

[51] 0e 00 00 00 01 40 00 00 00 00 00 00 00 00 00 00 0e 00 00 00 01 40 08 00 00

[76] 00 00 00 00

If you want, this can be sent to a file, but in that case you are better off using something like save().

The benefit of the serialize() function is that it is the only way to perfectly represent an R object
in an exportable format, without losing precision or any metadata. If that is what you need, then
serialize() is the function for you.

9. Interfaces to the Outside World
Watch a video of this chapter¹

Data are read in using connection interfaces. Connections can be made to files (most common) or to
other more exotic things.

• file, opens a connection to a file
• gzfile, opens a connection to a file compressed with gzip
• bzfile, opens a connection to a file compressed with bzip2
• url, opens a connection to a webpage

In general, connections are powerful tools that let you navigate files or other external objects.
Connections can be thought of as a translator that lets you talk to objects that are outside of R.
Those outside objects could be anything from a data base, a simple text file, or a a web service API.
Connections allow R functions to talk to all these different external objects without you having to
write custom code for each object.

9.1 File Connections

Connections to text files can be created with the file() function.

> str(file)

function (description = "", open = "", blocking = TRUE, encoding = getOption("encoding"),

raw = FALSE, method = getOption("url.method", "default"))

The file() function has a number of arguments that are common to many other connection
functions so it’s worth going into a little detail here.

• description is the name of the file
• open is a code indicating what mode the file should be opened in

The open argument allows for the following options:

• “r” open file in read only mode
• “w” open a file for writing (and initializing a new file)

¹https://youtu.be/Pb01WoJRUtY

https://youtu.be/Pb01WoJRUtY
https://youtu.be/Pb01WoJRUtY

Interfaces to the Outside World 37

• “a” open a file for appending
• “rb”, “wb”, “ab” reading, writing, or appending in binary mode (Windows)

In practice, we often don’t need to deal with the connection interface directly as many functions for
reading and writing data just deal with it in the background.

For example, if one were to explicitly use connections to read a CSV file in to R, it might look like
this,

> ## Create a connection to 'foo.txt'

> con <- file("foo.txt")

>

> ## Open connection to 'foo.txt' in read-only mode

> open(con, "r")

>

> ## Read from the connection

> data <- read.csv(con)

>

> ## Close the connection

> close(con)

which is the same as

> data <- read.csv("foo.txt")

In the background, read.csv() opens a connection to the file foo.txt, reads from it, and closes the
connection when it’s done.

The above example shows the basic approach to using connections. Connections must be opened,
then the are read from or written to, and then they are closed.

9.2 Reading Lines of a Text File

Text files can be read line by line using the readLines() function. This function is useful for reading
text files that may be unstructured or contain non-standard data.

> ## Open connection to gz-compressed text file

> con <- gzfile("words.gz")

> x <- readLines(con, 10)

> x

[1] "1080" "10-point" "10th" "11-point" "12-point" "16-point"

[7] "18-point" "1st" "2" "20-point"

Interfaces to the Outside World 38

For more structured text data like CSV files or tab-delimited files, there are other functions like
read.csv() or read.table().

The above example used the gzfile() function which is used to create a connection to files
compressed using the gzip algorithm. This approach is useful because it allows you to read from
a file without having to uncompress the file first, which would be a waste of space and time.

There is a complementary function writeLines() that takes a character vector and writes each
element of the vector one line at a time to a text file.

9.3 Reading From a URL Connection

The readLines() function can be useful for reading in lines of webpages. Since web pages are
basically text files that are stored on a remote server, there is conceptually not much difference
between a web page and a local text file. However, we need R to negotiate the communication
between your computer and the web server. This is what the url() function can do for you, by
creating a url connection to a web server.

This code might take time depending on your connection speed.

> ## Open a URL connection for reading

> con <- url("https://www.jhu.edu", "r")

>

> ## Read the web page

> x <- readLines(con)

>

> ## Print out the first few lines

> head(x)

[1] "<!doctype html>" ""

[3] "<html class=\"no-js\" lang=\"en\">" " <head>"

[5] " <script>" " dataLayer = [];"

While reading in a simple web page is sometimes useful, particularly if data are embedded in the
web page somewhere. However, more commonly we can use URL connection to read in specific data
files that are stored on web servers.

Using URL connections can be useful for producing a reproducible analysis, because the code
essentially documents where the data came from and how they were obtained. This is approach
is preferable to opening a web browser and downloading a dataset by hand. Of course, the code you
write with connections may not be executable at a later date if things on the server side are changed
or reorganized.

10. Subsetting R Objects
Watch a video of this section¹

There are three operators that can be used to extract subsets of R objects.

• The [operator always returns an object of the same class as the original. It can be used to select
multiple elements of an object

• The [[operator is used to extract elements of a list or a data frame. It can only be used to
extract a single element and the class of the returned object will not necessarily be a list or
data frame.

• The $ operator is used to extract elements of a list or data frame by literal name. Its semantics
are similar to that of [[.

10.1 Subsetting a Vector

Vectors are basic objects in R and they can be subsetted using the [operator.

> x <- c("a", "b", "c", "c", "d", "a")

> x[1] ## Extract the first element

[1] "a"

> x[2] ## Extract the second element

[1] "b"

The [operator can be used to extract multiple elements of a vector by passing the operator an integer
sequence. Here we extract the first four elements of the vector.

> x[1:4]

[1] "a" "b" "c" "c"

The sequence does not have to be in order; you can specify any arbitrary integer vector.

> x[c(1, 3, 4)]

[1] "a" "c" "c"

We can also pass a logical sequence to the [operator to extract elements of a vector that satisfy a
given condition. For example, here we want the elements of x that come lexicographically after the
letter “a”.

¹https://youtu.be/VfZUZGUgHqg

qtabt
Highlight

qtabt
Highlight

https://youtu.be/VfZUZGUgHqg
https://youtu.be/VfZUZGUgHqg

Subsetting R Objects 40

> u <- x > "a"

> u

[1] FALSE TRUE TRUE TRUE TRUE FALSE

> x[u]

[1] "b" "c" "c" "d"

Another, more compact, way to do this would be to skip the creation of a logical vector and just
subset the vector directly with the logical expression.

> x[x > "a"]

[1] "b" "c" "c" "d"

10.2 Subsetting a Matrix

Watch a video of this section²

Matrices can be subsetted in the usual way with (i,j) type indices. Here, we create simple 2×3matrix
with the matrix function.

> x <- matrix(1:6, 2, 3)

> x

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

We can access the (1, 2) or the (2, 1) element of this matrix using the appropriate indices.

> x[1, 2]

[1] 3

> x[2, 1]

[1] 2

Indices can also be missing. This behavior is used to access entire rows or columns of a matrix.

> x[1,] ## Extract the first row

[1] 1 3 5

> x[, 2] ## Extract the second column

[1] 3 4

Dropping matrix dimensions

By default, when a single element of a matrix is retrieved, it is returned as a vector of length 1 rather
than a 1×1matrix. Often, this is exactly what we want, but this behavior can be turned off by setting
drop = FALSE.

²https://youtu.be/FzjXesh9tRw

https://youtu.be/FzjXesh9tRw
https://youtu.be/FzjXesh9tRw

Subsetting R Objects 41

> x <- matrix(1:6, 2, 3)

> x[1, 2]

[1] 3

> x[1, 2, drop = FALSE]

[,1]

[1,] 3

Similarly, when we extract a single row or column of a matrix, R by default drops the dimension of
length 1, so instead of getting a 1× 3 matrix after extracting the first row, we get a vector of length
3. This behavior can similarly be turned off with the drop = FALSE option.

> x <- matrix(1:6, 2, 3)

> x[1,]

[1] 1 3 5

> x[1, , drop = FALSE]

[,1] [,2] [,3]

[1,] 1 3 5

Be careful of R’s automatic dropping of dimensions. This is a feature that is often quite useful
during interactive work, but can later come back to bite you when you are writing longer programs
or functions.

10.3 Subsetting Lists

Watch a video of this section³

Lists in R can be subsetted using all three of the operators mentioned above, and all three are used
for different purposes.

> x <- list(foo = 1:4, bar = 0.6)

> x

$foo

[1] 1 2 3 4

$bar

[1] 0.6

The [[operator can be used to extract single elements from a list. Here we extract the first element
of the list.

³https://youtu.be/DStKguVpuDI

https://youtu.be/DStKguVpuDI
https://youtu.be/DStKguVpuDI

Subsetting R Objects 42

> x[[1]]

[1] 1 2 3 4

The [[operator can also use named indices so that you don’t have to remember the exact ordering
of every element of the list. You can also use the $ operator to extract elements by name.

> x[["bar"]]

[1] 0.6

> x$bar

[1] 0.6

Notice you don’t need the quotes when you use the $ operator.

One thing that differentiates the [[operator from the $ is that the [[operator can be used with
computed indices. The $ operator can only be used with literal names.

> x <- list(foo = 1:4, bar = 0.6, baz = "hello")

> name <- "foo"

>

> ## computed index for "foo"

> x[[name]]

[1] 1 2 3 4

>

> ## element "name" doesnâ€™t exist! (but no error here)

> x$name

NULL

>

> ## element "foo" does exist

> x$foo

[1] 1 2 3 4

10.4 Subsetting Nested Elements of a List

The [[operator can take an integer sequence if you want to extract a nested element of a list.

Subsetting R Objects 43

> x <- list(a = list(10, 12, 14), b = c(3.14, 2.81))

>

> ## Get the 3rd element of the 1st element

> x[[c(1, 3)]]

[1] 14

>

> ## Same as above

> x[[1]][[3]]

[1] 14

>

> ## 1st element of the 2nd element

> x[[c(2, 1)]]

[1] 3.14

10.5 Extracting Multiple Elements of a List

The [operator can be used to extract multiple elements from a list. For example, if you wanted to
extract the first and third elements of a list, you would do the following

> x <- list(foo = 1:4, bar = 0.6, baz = "hello")

> x[c(1, 3)]

$foo

[1] 1 2 3 4

$baz

[1] "hello"

Note that x[c(1, 3)] is NOT the same as x[[c(1, 3)]].

Remember that the [operator always returns an object of the same class as the original. Since the
original object was a list, the [operator returns a list. In the above code, we returned a list with two
elements (the first and the third).

10.6 Partial Matching

Watch a video of this section⁴

Partial matching of names is allowed with [[and $. This is often very useful during interactive work
if the object you’re working with has very long element names. You can just abbreviate those names
and R will figure out what element you’re referring to.

⁴https://youtu.be/q3BNhHHVCu4

https://youtu.be/q3BNhHHVCu4
https://youtu.be/q3BNhHHVCu4

Subsetting R Objects 44

> x <- list(aardvark = 1:5)

> x$a

[1] 1 2 3 4 5

> x[["a"]]

NULL

> x[["a", exact = FALSE]]

[1] 1 2 3 4 5

In general, this is fine for interactive work, but you shouldn’t resort to partial matching if you are
writing longer scripts, functions, or programs. In those cases, you should refer to the full element
name if possible. That way there’s no ambiguity in your code.

10.7 Removing NA Values

Watch a video of this section⁵

A common task in data analysis is removing missing values (NAs).

> x <- c(1, 2, NA, 4, NA, 5)

> bad <- is.na(x)

> print(bad)

[1] FALSE FALSE TRUE FALSE TRUE FALSE

> x[!bad]

[1] 1 2 4 5

What if there are multiple R objects and you want to take the subset with no missing values in any
of those objects?

> x <- c(1, 2, NA, 4, NA, 5)

> y <- c("a", "b", NA, "d", NA, "f")

> good <- complete.cases(x, y)

> good

[1] TRUE TRUE FALSE TRUE FALSE TRUE

> x[good]

[1] 1 2 4 5

> y[good]

[1] "a" "b" "d" "f"

You can use complete.cases on data frames too.

⁵https://youtu.be/TtJxmwXbwo0

https://youtu.be/TtJxmwXbwo0
https://youtu.be/TtJxmwXbwo0

Subsetting R Objects 45

> head(airquality)

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

> good <- complete.cases(airquality)

> head(airquality[good,])

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

7 23 299 8.6 65 5 7

8 19 99 13.8 59 5 8

11. Vectorized Operations
Watch a video of this chapter¹

Many operations in R are vectorized, meaning that operations occur in parallel in certain R objects.
This allows you to write code that is efficient, concise, and easier to read than in non-vectorized
languages.

The simplest example is when adding two vectors together.

> x <- 1:4

> y <- 6:9

> z <- x + y

> z

[1] 7 9 11 13

Natural, right? Without vectorization, you’d have to do something like

z <- numeric(length(x))

for(i in seq_along(x)) {

z[i] <- x[i] + y[i]

}

z

[1] 7 9 11 13

If you had to do that every time you wanted to add two vectors, your hands would get very tired
from all the typing.

Another operation you can do in a vectorized manner is logical comparisons. So suppose you wanted
to know which elements of a vector were greater than 2. You could do he following.

> x

[1] 1 2 3 4

> x > 2

[1] FALSE FALSE TRUE TRUE

Here are other vectorized logical operations.

¹https://youtu.be/YH3qtw7mTyA

https://youtu.be/YH3qtw7mTyA
https://youtu.be/YH3qtw7mTyA

Vectorized Operations 47

> x >= 2

[1] FALSE TRUE TRUE TRUE

> x < 3

[1] TRUE TRUE FALSE FALSE

> y == 8

[1] FALSE FALSE TRUE FALSE

Notice that these logical operations return a logical vector of TRUE and FALSE.

Of course, subtraction, multiplication and division are also vectorized.

> x - y

[1] -5 -5 -5 -5

> x * y

[1] 6 14 24 36

> x / y

[1] 0.1666667 0.2857143 0.3750000 0.4444444

11.1 Vectorized Matrix Operations

Matrix operations are also vectorized, making for nicly compact notation. This way, we can do
element-by-element operations on matrices without having to loop over every element.

> x <- matrix(1:4, 2, 2)

> y <- matrix(rep(10, 4), 2, 2)

>

> ## element-wise multiplication

> x * y

[,1] [,2]

[1,] 10 30

[2,] 20 40

>

> ## element-wise division

> x / y

[,1] [,2]

[1,] 0.1 0.3

[2,] 0.2 0.4

>

> ## true matrix multiplication

> x %*% y

[,1] [,2]

[1,] 40 40

[2,] 60 60

12. Dates and Times
R has developed a special representation for dates and times. Dates are represented by the Date class
and times are represented by the POSIXct or the POSIXlt class. Dates are stored internally as the
number of days since 1970-01-01 while times are stored internally as the number of seconds since
1970-01-01.

It’s not important to know the internal representation of dates and times in order to use them in R.
I just thought those were fun facts.

12.1 Dates in R

Watch a video of this section¹

Dates are represented by the Date class and can be coerced from a character string using the
as.Date() function. This is a common way to end up with a Date object in R.

> ## Coerce a 'Date' object from character

> x <- as.Date("1970-01-01")

> x

[1] "1970-01-01"

You can see the internal representation of a Date object by using the unclass() function.

> unclass(x)

[1] 0

> unclass(as.Date("1970-01-02"))

[1] 1

12.2 Times in R

Watch a video of this section²

Times are represented by the POSIXct or the POSIXlt class. POSIXct is just a very large integer under
the hood. It use a useful class when you want to store times in something like a data frame. POSIXlt
is a list underneath and it stores a bunch of other useful information like the day of the week, day
of the year, month, day of the month. This is useful when you need that kind of information.

There are a number of generic functions that work on dates and times to help you extract pieces of
dates and/or times.

¹https://youtu.be/opYexVgjwkE
²https://youtu.be/8HENCYXwZoU

https://youtu.be/opYexVgjwkE
https://youtu.be/8HENCYXwZoU
https://youtu.be/opYexVgjwkE
https://youtu.be/8HENCYXwZoU

Dates and Times 49

• weekdays: give the day of the week
• months: give the month name
• quarters: give the quarter number (“Q1”, “Q2”, “Q3”, or “Q4”)

Times can be coerced from a character string using the as.POSIXlt or as.POSIXct function.

> x <- Sys.time()

> x

[1] "2022-05-31 09:18:49 EDT"

> class(x) ## 'POSIXct' object

[1] "POSIXct" "POSIXt"

The POSIXlt object contains some useful metadata.

> p <- as.POSIXlt(x)

> names(unclass(p))

[1] "sec" "min" "hour" "mday" "mon" "year" "wday" "yday"

[9] "isdst" "zone" "gmtoff"

> p$wday ## day of the week

[1] 2

You can also use the POSIXct format.

> x <- Sys.time()

> x ## Already in ‘POSIXct’ format

[1] "2022-05-31 09:18:49 EDT"

> unclass(x) ## Internal representation

[1] 1654003130

> x$sec ## Can't do this with 'POSIXct'!

Error in x$sec: $ operator is invalid for atomic vectors

> p <- as.POSIXlt(x)

> p$sec ## That's better

[1] 49.77399

Finally, there is the strptime() function in case your dates are written in a different format.
strptime() takes a character vector that has dates and times and converts them into to a POSIXlt

object.

Dates and Times 50

> datestring <- c("January 10, 2012 10:40", "December 9, 2011 9:10")

> x <- strptime(datestring, "%B %d, %Y %H:%M")

> x

[1] "2012-01-10 10:40:00 EST" "2011-12-09 09:10:00 EST"

> class(x)

[1] "POSIXlt" "POSIXt"

The weird-looking symbols that start with the % symbol are the formatting strings for dates and
times. I can never remember the formatting strings. Check ?strptime for details. It’s probably not
worth memorizing this stuff.

12.3 Operations on Dates and Times

Watch a video of this section³

You can use mathematical operations on dates and times. Well, really just + and -. You can do
comparisons too (i.e. ==, <=)

> x <- as.Date("2012-01-01")

> y <- strptime("9 Jan 2011 11:34:21", "%d %b %Y %H:%M:%S")

> x-y

Warning: Incompatible methods ("-.Date", "-.POSIXt") for "-"

Error in x - y: non-numeric argument to binary operator

> x <- as.POSIXlt(x)

> x-y

Time difference of 356.3095 days

The nice thing about the date/time classes is that they keep track of all the annoying things about
dates and times, like leap years, leap seconds, daylight savings, and time zones.

Here’s an example where a leap year gets involved.

> x <- as.Date("2012-03-01")

> y <- as.Date("2012-02-28")

> x-y

Time difference of 2 days

Here’s an example where two different time zones are in play (unless you live in GMT timezone, in
which case they will be the same!).

³https://youtu.be/vEmWJrpP1KM

https://youtu.be/vEmWJrpP1KM
https://youtu.be/vEmWJrpP1KM

Dates and Times 51

> ## My local time zone

> x <- as.POSIXct("2012-10-25 01:00:00")

> y <- as.POSIXct("2012-10-25 06:00:00", tz = "GMT")

> y-x

Time difference of 1 hours

12.4 Summary

• Dates and times have special classes in R that allow for numerical and statistical calculations
• Dates use the Date class
• Times use the POSIXct and POSIXlt class
• Character strings can be coerced to Date/Time classes using the strptime function or the
as.Date, as.POSIXlt, or as.POSIXct

13. Managing Data Frames with the
dplyr package

Watch a video of this chapter¹

13.1 Data Frames

The data frame is a key data structure in statistics and in R. The basic structure of a data frame is
that there is one observation per row and each column represents a variable, a measure, feature, or
characteristic of that observation. R has an internal implementation of data frames that is likely the
one you will use most often. However, there are packages on CRAN that implement data frames via
things like relational databases that allow you to operate on very very large data frames (but we
won’t discuss them here).

Given the importance of managing data frames, it’s important that we have good tools for dealing
with them. In previous chapters we have already discussed some tools like the subset() function
and the use of [and $ operators to extract subsets of data frames. However, other operations, like
filtering, re-ordering, and collapsing, can often be tedious operations in R whose syntax is not very
intuitive. The dplyr package is designed to mitigate a lot of these problems and to provide a highly
optimized set of routines specifically for dealing with data frames.

13.2 The dplyr Package

The dplyr package was developed by Hadley Wickham of RStudio and is an optimized and distilled
version of his plyr package. The dplyr package does not provide any “new” functionality to R per se,
in the sense that everything dplyr does could already be done with base R, but it greatly simplifies
existing functionality in R.

One important contribution of the dplyr package is that it provides a “grammar” (in particular,
verbs) for data manipulation and for operating on data frames. With this grammar, you can sensibly
communicate what it is that you are doing to a data frame that other people can understand
(assuming they also know the grammar). This is useful because it provides an abstraction for data
manipulation that previously did not exist. Another useful contribution is that the dplyr functions
are very fast, as many key operations are coded in C++.

¹https://youtu.be/aywFompr1F4

https://youtu.be/aywFompr1F4
https://youtu.be/aywFompr1F4

Managing Data Frames with the dplyr package 53

13.3 dplyr Grammar

Some of the key “verbs” provided by the dplyr package are

• select: return a subset of the columns of a data frame, using a flexible notation
• filter: extract a subset of rows from a data frame based on logical conditions
• arrange: reorder rows of a data frame
• rename: rename variables in a data frame
• mutate: add new variables/columns or transform existing variables
• summarise / summarize: generate summary statistics of different variables in the data frame,
possibly within strata

• %>%: the “pipe” operator is used to connect multiple verb actions together into a pipeline

The dplyr package as a number of its own data types that it takes advantage of. For example, there
is a handy print method that prevents you from printing a lot of data to the console. Most of the
time, these additional data types are transparent to the user and do not need to be worried about.

Common dplyr Function Properties

All of the functions that we will discuss in this Chapter will have a few common characteristics. In
particular,

1. The first argument is a data frame.
2. The subsequent arguments describe what to do with the data frame specified in the first

argument, and you can refer to columns in the data frame directly without using the $ operator
(just use the column names).

3. The return result of a function is a new data frame
4. Data frames must be properly formatted and annotated for this to all be useful. In particular,

the data must be tidy². In short, there should be one observation per row, and each column
should represent a feature or characteristic of that observation.

13.4 Installing the dplyr package

The dplyr package can be installed from CRAN or from GitHub using the devtools package and
the install_github() function. The GitHub repository will usually contain the latest updates to the
package and the development version.

To install from CRAN, just run

²http://www.jstatsoft.org/v59/i10/paper

http://www.jstatsoft.org/v59/i10/paper
http://www.jstatsoft.org/v59/i10/paper

Managing Data Frames with the dplyr package 54

> install.packages("dplyr")

To install from GitHub you can run

> install_github("hadley/dplyr")

After installing the package it is important that you load it into your R session with the library()
function.

> library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

You may get some warnings when the package is loaded because there are functions in the dplyr

package that have the same name as functions in other packages. For now you can ignore the
warnings.

13.5 select()

For the examples in this chapter we will be using a dataset containing air pollution and temperature
data for the city of Chicago³ in the U.S. The dataset is available from my web site.

After unzipping the archive, you can load the data into R using the readRDS() function.

> chicago <- readRDS("chicago.rds")

You can see some basic characteristics of the dataset with the dim() and str() functions.

³http://www.biostat.jhsph.edu/~rpeng/leanpub/rprog/chicago_data.zip

http://www.biostat.jhsph.edu/~rpeng/leanpub/rprog/chicago_data.zip
http://www.biostat.jhsph.edu/~rpeng/leanpub/rprog/chicago_data.zip

Managing Data Frames with the dplyr package 55

> dim(chicago)

[1] 6940 8

> str(chicago)

'data.frame': 6940 obs. of 8 variables:

$ city : chr "chic" "chic" "chic" "chic" ...

$ tmpd : num 31.5 33 33 29 32 40 34.5 29 26.5 32.5 ...

$ dptp : num 31.5 29.9 27.4 28.6 28.9 ...

$ date : Date, format: "1987-01-01" "1987-01-02" ...

$ pm25tmean2: num NA NA NA NA NA NA NA NA NA NA ...

$ pm10tmean2: num 34 NA 34.2 47 NA ...

$ o3tmean2 : num 4.25 3.3 3.33 4.38 4.75 ...

$ no2tmean2 : num 20 23.2 23.8 30.4 30.3 ...

The select() function can be used to select columns of a data frame that you want to focus on.
Often you’ll have a large data frame containing “all” of the data, but any given analysis might only
use a subset of variables or observations. The select() function allows you to get the few columns
you might need.

Suppose we wanted to take the first 3 columns only. There are a few ways to do this. We could for
example use numerical indices. But we can also use the names directly.

> names(chicago)[1:3]

[1] "city" "tmpd" "dptp"

> subset <- select(chicago, city:dptp)

> head(subset)

city tmpd dptp

1 chic 31.5 31.500

2 chic 33.0 29.875

3 chic 33.0 27.375

4 chic 29.0 28.625

5 chic 32.0 28.875

6 chic 40.0 35.125

Note that the : normally cannot be used with names or strings, but inside the select() function
you can use it to specify a range of variable names.

You can also omit variables using the select() function by using the negative sign. With select()

you can do

> select(chicago, -(city:dptp))

which indicates that we should include every variable except the variables city through dptp. The
equivalent code in base R would be

Managing Data Frames with the dplyr package 56

> i <- match("city", names(chicago))

> j <- match("dptp", names(chicago))

> head(chicago[, -(i:j)])

Not super intuitive, right?

The select() function also allows a special syntax that allows you to specify variable names based
on patterns. So, for example, if you wanted to keep every variable that ends with a “2”, we could do

> subset <- select(chicago, ends_with("2"))

> str(subset)

'data.frame': 6940 obs. of 4 variables:

$ pm25tmean2: num NA NA NA NA NA NA NA NA NA NA ...

$ pm10tmean2: num 34 NA 34.2 47 NA ...

$ o3tmean2 : num 4.25 3.3 3.33 4.38 4.75 ...

$ no2tmean2 : num 20 23.2 23.8 30.4 30.3 ...

Or if we wanted to keep every variable that starts with a “d”, we could do

> subset <- select(chicago, starts_with("d"))

> str(subset)

'data.frame': 6940 obs. of 2 variables:

$ dptp: num 31.5 29.9 27.4 28.6 28.9 ...

$ date: Date, format: "1987-01-01" "1987-01-02" ...

You can also use more general regular expressions if necessary. See the help page (?select) for more
details.

13.6 filter()

The filter() function is used to extract subsets of rows from a data frame. This function is similar
to the existing subset() function in R but is quite a bit faster in my experience.

Suppose we wanted to extract the rows of the chicago data frame where the levels of PM2.5 are
greater than 30 (which is a reasonably high level), we could do

Managing Data Frames with the dplyr package 57

> chic.f <- filter(chicago, pm25tmean2 > 30)

> str(chic.f)

'data.frame': 194 obs. of 8 variables:

$ city : chr "chic" "chic" "chic" "chic" ...

$ tmpd : num 23 28 55 59 57 57 75 61 73 78 ...

$ dptp : num 21.9 25.8 51.3 53.7 52 56 65.8 59 60.3 67.1 ...

$ date : Date, format: "1998-01-17" "1998-01-23" ...

$ pm25tmean2: num 38.1 34 39.4 35.4 33.3 ...

$ pm10tmean2: num 32.5 38.7 34 28.5 35 ...

$ o3tmean2 : num 3.18 1.75 10.79 14.3 20.66 ...

$ no2tmean2 : num 25.3 29.4 25.3 31.4 26.8 ...

You can see that there are now only 194 rows in the data frame and the distribution of the pm25tmean2
values is.

> summary(chic.f$pm25tmean2)

Min. 1st Qu. Median Mean 3rd Qu. Max.

30.05 32.12 35.04 36.63 39.53 61.50

We can place an arbitrarily complex logical sequence inside of filter(), so we could for example
extract the rows where PM2.5 is greater than 30 and temperature is greater than 80 degrees
Fahrenheit.

> chic.f <- filter(chicago, pm25tmean2 > 30 & tmpd > 80)

> select(chic.f, date, tmpd, pm25tmean2)

date tmpd pm25tmean2

1 1998-08-23 81 39.60000

2 1998-09-06 81 31.50000

3 2001-07-20 82 32.30000

4 2001-08-01 84 43.70000

5 2001-08-08 85 38.83750

6 2001-08-09 84 38.20000

7 2002-06-20 82 33.00000

8 2002-06-23 82 42.50000

9 2002-07-08 81 33.10000

10 2002-07-18 82 38.85000

11 2003-06-25 82 33.90000

12 2003-07-04 84 32.90000

13 2005-06-24 86 31.85714

14 2005-06-27 82 51.53750

15 2005-06-28 85 31.20000

16 2005-07-17 84 32.70000

17 2005-08-03 84 37.90000

Now there are only 17 observations where both of those conditions are met.

Managing Data Frames with the dplyr package 58

13.7 arrange()

The arrange() function is used to reorder rows of a data frame according to one of the variables/-
columns. Reordering rows of a data frame (while preserving corresponding order of other columns)
is normally a pain to do in R. The arrange() function simplifies the process quite a bit.

Here we can order the rows of the data frame by date, so that the first row is the earliest (oldest)
observation and the last row is the latest (most recent) observation.

> chicago <- arrange(chicago, date)

We can now check the first few rows

> head(select(chicago, date, pm25tmean2), 3)

date pm25tmean2

1 1987-01-01 NA

2 1987-01-02 NA

3 1987-01-03 NA

and the last few rows.

> tail(select(chicago, date, pm25tmean2), 3)

date pm25tmean2

6938 2005-12-29 7.45000

6939 2005-12-30 15.05714

6940 2005-12-31 15.00000

Columns can be arranged in descending order too by useing the special desc() operator.

> chicago <- arrange(chicago, desc(date))

Looking at the first three and last three rows shows the dates in descending order.

> head(select(chicago, date, pm25tmean2), 3)

date pm25tmean2

1 2005-12-31 15.00000

2 2005-12-30 15.05714

3 2005-12-29 7.45000

> tail(select(chicago, date, pm25tmean2), 3)

date pm25tmean2

6938 1987-01-03 NA

6939 1987-01-02 NA

6940 1987-01-01 NA

Managing Data Frames with the dplyr package 59

13.8 rename()

Renaming a variable in a data frame in R is surprisingly hard to do! The rename() function is designed
to make this process easier.

Here you can see the names of the first five variables in the chicago data frame.

> head(chicago[, 1:5], 3)

city tmpd dptp date pm25tmean2

1 chic 35 30.1 2005-12-31 15.00000

2 chic 36 31.0 2005-12-30 15.05714

3 chic 35 29.4 2005-12-29 7.45000

The dptp column is supposed to represent the dew point temperature adn the pm25tmean2 column
provides the PM2.5 data. However, these names are pretty obscure or awkward and probably be
renamed to something more sensible.

> chicago <- rename(chicago, dewpoint = dptp, pm25 = pm25tmean2)

> head(chicago[, 1:5], 3)

city tmpd dewpoint date pm25

1 chic 35 30.1 2005-12-31 15.00000

2 chic 36 31.0 2005-12-30 15.05714

3 chic 35 29.4 2005-12-29 7.45000

The syntax inside the rename() function is to have the new name on the left-hand side of the = sign
and the old name on the right-hand side.

I leave it as an exercise for the reader to figure how you do this in base R without dplyr.

13.9 mutate()

The mutate() function exists to compute transformations of variables in a data frame. Often, you
want to create new variables that are derived from existing variables and mutate() provides a clean
interface for doing that.

For example, with air pollution data, we often want to detrend the data by subtracting the mean
from the data. That way we can look at whether a given day’s air pollution level is higher than or
less than average (as opposed to looking at its absolute level).

Here we create a pm25detrend variable that subtracts the mean from the pm25 variable.

Managing Data Frames with the dplyr package 60

> chicago <- mutate(chicago, pm25detrend = pm25 - mean(pm25, na.rm = TRUE))

> head(chicago)

city tmpd dewpoint date pm25 pm10tmean2 o3tmean2 no2tmean2

1 chic 35 30.1 2005-12-31 15.00000 23.5 2.531250 13.25000

2 chic 36 31.0 2005-12-30 15.05714 19.2 3.034420 22.80556

3 chic 35 29.4 2005-12-29 7.45000 23.5 6.794837 19.97222

4 chic 37 34.5 2005-12-28 17.75000 27.5 3.260417 19.28563

5 chic 40 33.6 2005-12-27 23.56000 27.0 4.468750 23.50000

6 chic 35 29.6 2005-12-26 8.40000 8.5 14.041667 16.81944

pm25detrend

1 -1.230958

2 -1.173815

3 -8.780958

4 1.519042

5 7.329042

6 -7.830958

There is also the related transmute() function, which does the same thing as mutate() but then
drops all non-transformed variables.

Here we detrend the PM10 and ozone (O3) variables.

> head(transmute(chicago,

+ pm10detrend = pm10tmean2 - mean(pm10tmean2, na.rm = TRUE),

+ o3detrend = o3tmean2 - mean(o3tmean2, na.rm = TRUE)))

pm10detrend o3detrend

1 -10.395206 -16.904263

2 -14.695206 -16.401093

3 -10.395206 -12.640676

4 -6.395206 -16.175096

5 -6.895206 -14.966763

6 -25.395206 -5.393846

Note that there are only two columns in the transmuted data frame.

13.10 group_by()

The group_by() function is used to generate summary statistics from the data frame within strata
defined by a variable. For example, in this air pollution dataset, you might want to know what the
average annual level of PM2.5 is. So the stratum is the year, and that is something we can derive
from the date variable. In conjunction with the group_by() function we often use the summarize()
function (or summarise() for some parts of the world).

The general operation here is a combination of splitting a data frame into separate pieces defined by
a variable or group of variables (group_by()), and then applying a summary function across those
subsets (summarize()).

Managing Data Frames with the dplyr package 61

First, we can create a year varible using as.POSIXlt().

> chicago <- mutate(chicago, year = as.POSIXlt(date)$year + 1900)

Now we can create a separate data frame that splits the original data frame by year.

> years <- group_by(chicago, year)

Finally, we compute summary statistics for each year in the data frame with the summarize()

function.

> summarize(years, pm25 = mean(pm25, na.rm = TRUE),

+ o3 = max(o3tmean2, na.rm = TRUE),

+ no2 = median(no2tmean2, na.rm = TRUE),

+ .groups = "drop")

A tibble: 19 × 4

year pm25 o3 no2

<dbl> <dbl> <dbl> <dbl>

1 1987 NaN 63.0 23.5

2 1988 NaN 61.7 24.5

3 1989 NaN 59.7 26.1

4 1990 NaN 52.2 22.6

5 1991 NaN 63.1 21.4

6 1992 NaN 50.8 24.8

7 1993 NaN 44.3 25.8

8 1994 NaN 52.2 28.5

9 1995 NaN 66.6 27.3

10 1996 NaN 58.4 26.4

11 1997 NaN 56.5 25.5

12 1998 18.3 50.7 24.6

13 1999 18.5 57.5 24.7

14 2000 16.9 55.8 23.5

15 2001 16.9 51.8 25.1

16 2002 15.3 54.9 22.7

17 2003 15.2 56.2 24.6

18 2004 14.6 44.5 23.4

19 2005 16.2 58.8 22.6

summarize() returns a data frame with year as the first column, and then the annual averages of
pm25, o3, and no2.

In a slightly more complicated example, we might want to know what are the average levels of
ozone (o3) and nitrogen dioxide (no2) within quintiles of pm25. A slicker way to do this would be
through a regression model, but we can actually do this quickly with group_by() and summarize().

First, we can create a categorical variable of pm25 divided into quintiles.

Managing Data Frames with the dplyr package 62

> qq <- quantile(chicago$pm25, seq(0, 1, 0.2), na.rm = TRUE)

> chicago <- mutate(chicago, pm25.quint = cut(pm25, qq))

Now we can group the data frame by the pm25.quint variable.

> quint <- group_by(chicago, pm25.quint)

Finally, we can compute the mean of o3 and no2 within quintiles of pm25.

> summarize(quint, o3 = mean(o3tmean2, na.rm = TRUE),

+ no2 = mean(no2tmean2, na.rm = TRUE),

+ .groups = "drop")

A tibble: 6 × 3

pm25.quint o3 no2

<fct> <dbl> <dbl>

1 (1.7,8.7] 21.7 18.0

2 (8.7,12.4] 20.4 22.1

3 (12.4,16.7] 20.7 24.4

4 (16.7,22.6] 19.9 27.3

5 (22.6,61.5] 20.3 29.6

6 <NA> 18.8 25.8

From the table, it seems there isn’t a strong relationship between pm25 and o3, but there appears to
be a positive correlation between pm25 and no2. More sophisticated statistical modeling can help to
provide precise answers to these questions, but a simple application of dplyr functions can often get
you most of the way there.

13.11 %>%

The pipeline operater %>% is very handy for stringing together multiple dplyr functions in a sequence
of operations. Notice above that every timewewanted to applymore than one function, the sequence
gets buried in a sequence of nested function calls that is difficult to read, i.e.

> third(second(first(x)))

This nesting is not a natural way to think about a sequence of operations. The %>% operator allows
you to string operations in a left-to-right fashion, i.e.

> first(x) %>% second %>% third

Take the example that we just did in the last section where we computed the mean of o3 and no2

within quintiles of pm25. There we had to

Managing Data Frames with the dplyr package 63

1. create a new variable pm25.quint
2. split the data frame by that new variable
3. compute the mean of o3 and no2 in the sub-groups defined by pm25.quint

That can be done with the following sequence in a single R expression.

> mutate(chicago, pm25.quint = cut(pm25, qq)) %>%

+ group_by(pm25.quint) %>%

+ summarize(o3 = mean(o3tmean2, na.rm = TRUE),

+ no2 = mean(no2tmean2, na.rm = TRUE),

+ .groups = "drop")

A tibble: 6 × 3

pm25.quint o3 no2

<fct> <dbl> <dbl>

1 (1.7,8.7] 21.7 18.0

2 (8.7,12.4] 20.4 22.1

3 (12.4,16.7] 20.7 24.4

4 (16.7,22.6] 19.9 27.3

5 (22.6,61.5] 20.3 29.6

6 <NA> 18.8 25.8

This way we don’t have to create a set of temporary variables along the way or create a massive
nested sequence of function calls.

Notice in the above code that I pass the chicago data frame to the first call to mutate(), but then
afterwards I do not have to pass the first argument to group_by() or summarize(). Once you travel
down the pipeline with %>%, the first argument is taken to be the output of the previous element in
the pipeline.

Another example might be computing the average pollutant level by month. This could be useful to
see if there are any seasonal trends in the data.

> mutate(chicago, month = as.POSIXlt(date)$mon + 1) %>%

+ group_by(month) %>%

+ summarize(pm25 = mean(pm25, na.rm = TRUE),

+ o3 = max(o3tmean2, na.rm = TRUE),

+ no2 = median(no2tmean2, na.rm = TRUE),

+ .groups = "drop")

A tibble: 12 × 4

month pm25 o3 no2

<dbl> <dbl> <dbl> <dbl>

1 1 17.8 28.2 25.4

2 2 20.4 37.4 26.8

3 3 17.4 39.0 26.8

4 4 13.9 47.9 25.0

5 5 14.1 52.8 24.2

Managing Data Frames with the dplyr package 64

6 6 15.9 66.6 25.0

7 7 16.6 59.5 22.4

8 8 16.9 54.0 23.0

9 9 15.9 57.5 24.5

10 10 14.2 47.1 24.2

11 11 15.2 29.5 23.6

12 12 17.5 27.7 24.5

Here we can see that o3 tends to be low in the winter months and high in the summer while no2 is
higher in the winter and lower in the summer.

13.12 Summary

The dplyr package provides a concise set of operations for managing data frames. With these
functions we can do a number of complex operations in just a few lines of code. In particular,
we can often conduct the beginnings of an exploratory analysis with the powerful combination
of group_by() and summarize().

Once you learn the dplyr grammar there are a few additional benefits

• dplyr can work with other data frame “backends” such as SQL databases. There is an SQL
interface for relational databases via the DBI package

• dplyr can be integrated with the data.table package for large fast tables

The dplyr package is handy way to both simplify and speed up your data frame management code.
It’s rare that you get such a combination at the same time!

14. Control Structures
Watch a video of this section¹

Control structures in R allow you to control the flow of execution of a series of R expressions.
Basically, control structures allow you to put some “logic” into your R code, rather than just always
executing the same R code every time. Control structures allow you to respond to inputs or to
features of the data and execute different R expressions accordingly.

Commonly used control structures are

• if and else: testing a condition and acting on it
• for: execute a loop a fixed number of times
• while: execute a loop while a condition is true
• repeat: execute an infinite loop (must break out of it to stop)
• break: break the execution of a loop
• next: skip an interation of a loop

Most control structures are not used in interactive sessions, but rather when writing functions or
longer expresisons. However, these constructs do not have to be used in functions and it’s a good
idea to become familiar with them before we delve into functions.

14.1 if-else

Watch a video of this section²

The if-else combination is probably the most commonly used control structure in R (or perhaps
any language). This structure allows you to test a condition and act on it depending on whether it’s
true or false.

For starters, you can just use the if statement.

if(<condition>) {

do something

}

Continue with rest of code

The above code does nothing if the condition is false. If you have an action you want to execute
when the condition is false, then you need an else clause.

¹https://youtu.be/BPNLjUDZ8_o
²https://youtu.be/ZaBtJPYYGwg

https://youtu.be/BPNLjUDZ8_o
https://youtu.be/ZaBtJPYYGwg
https://youtu.be/BPNLjUDZ8_o
https://youtu.be/ZaBtJPYYGwg

Control Structures 66

if(<condition>) {

do something

}

else {

do something else

}

You can have a series of tests by following the initial if with any number of else ifs.

if(<condition1>) {

do something

} else if(<condition2>) {

do something different

} else {

do something different

}

Here is an example of a valid if/else structure.

Generate a uniform random number

x <- runif(1, 0, 10)

if(x > 3) {

y <- 10

} else {

y <- 0

}

The value of y is set depending on whether x > 3 or not. This expression can also be written a
different, but equivalent, way in R.

y <- if(x > 3) {

10

} else {

0

}

Neither way of writing this expression is more correct than the other.Which one you use will depend
on your preference and perhaps those of the team you may be working with.

Of course, the else clause is not necessary. You could have a series of if clauses that always get
executed if their respective conditions are true.

Control Structures 67

if(<condition1>) {

}

if(<condition2>) {

}

14.2 for Loops

Watch a video of this section³

For loops are pretty much the only looping construct that you will need in R. While you may
occasionally find a need for other types of loops, in my experience doing data analysis, I’ve found
very few situations where a for loop wasn’t sufficient.

In R, for loops take an interator variable and assign it successive values from a sequence or vector.
For loops are most commonly used for iterating over the elements of an object (list, vector, etc.)

> for(i in 1:10) {

+ print(i)

+ }

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10

This loop takes the i variable and in each iteration of the loop gives it values 1, 2, 3, …, 10, executes
the code within the curly braces, and then the loop exits.

The following three loops all have the same behavior.

³https://youtu.be/FbT1dGXCCxU

https://youtu.be/FbT1dGXCCxU
https://youtu.be/FbT1dGXCCxU

Control Structures 68

> x <- c("a", "b", "c", "d")

>

> for(i in 1:4) {

+ ## Print out each element of 'x'

+ print(x[i])

+ }

[1] "a"

[1] "b"

[1] "c"

[1] "d"

The seq_along() function is commonly used in conjunction with for loops in order to generate an
integer sequence based on the length of an object (in this case, the object x).

> ## Generate a sequence based on length of 'x'

> for(i in seq_along(x)) {

+ print(x[i])

+ }

[1] "a"

[1] "b"

[1] "c"

[1] "d"

It is not necessary to use an index-type variable.

> for(letter in x) {

+ print(letter)

+ }

[1] "a"

[1] "b"

[1] "c"

[1] "d"

For one line loops, the curly braces are not strictly necessary.

> for(i in 1:4) print(x[i])

[1] "a"

[1] "b"

[1] "c"

[1] "d"

However, I like to use curly braces even for one-line loops, because that way if you decide to expand
the loop to multiple lines, you won’t be burned because you forgot to add curly braces (and youwill
be burned by this).

Control Structures 69

14.3 Nested for loops

for loops can be nested inside of each other.

x <- matrix(1:6, 2, 3)

for(i in seq_len(nrow(x))) {

for(j in seq_len(ncol(x))) {

print(x[i, j])

}

}

Nested loops are commonly needed for multidimensional or hierarchical data structures (e.g.
matrices, lists). Be careful with nesting though. Nesting beyond 2 to 3 levels often makes it difficult
to read/understand the code. If you find yourself in need of a large number of nested loops, you may
want to break up the loops by using functions (discussed later).

14.4 while Loops

Watch a video of this section⁴

While loops begin by testing a condition. If it is true, then they execute the loop body. Once the loop
body is executed, the condition is tested again, and so forth, until the condition is false, after which
the loop exits.

> count <- 0

> while(count < 10) {

+ print(count)

+ count <- count + 1

+ }

[1] 0

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

While loops can potentially result in infinite loops if not written properly. Use with care!

Sometimes there will be more than one condition in the test.
⁴https://youtu.be/VqrS1Wghq1c

https://youtu.be/VqrS1Wghq1c
https://youtu.be/VqrS1Wghq1c

Control Structures 70

> z <- 5

> set.seed(1)

>

> while(z >= 3 && z <= 10) {

+ coin <- rbinom(1, 1, 0.5)

+

+ if(coin == 1) { ## random walk

+ z <- z + 1

+ } else {

+ z <- z - 1

+ }

+ }

> print(z)

[1] 2

Conditions are always evaluated from left to right. For example, in the above code, if z were less
than 3, the second test would not have been evaluated.

14.5 repeat Loops

Watch a video of this section⁵

repeat initiates an infinite loop right from the start. These are not commonly used in statistical or
data analysis applications but they do have their uses. The only way to exit a repeat loop is to call
break.

One possible paradigm might be in an iterative algorith where you may be searching for a solution
and you don’t want to stop until you’re close enough to the solution. In this kind of situation, you
often don’t know in advance how many iterations it’s going to take to get “close enough” to the
solution.

x0 <- 1

tol <- 1e-8

repeat {

x1 <- computeEstimate()

if(abs(x1 - x0) < tol) { ## Close enough?

break

} else {

x0 <- x1

}

}

⁵https://youtu.be/SajmdYr30SY

https://youtu.be/SajmdYr30SY
https://youtu.be/SajmdYr30SY

Control Structures 71

Note that the above code will not run if the computeEstimate() function is not defined (I just made
it up for the purposes of this demonstration).

The loop above is a bit dangerous because there’s no guarantee it will stop. You could get in a
situation where the values of x0 and x1 oscillate back and forth and never converge. Better to set
a hard limit on the number of iterations by using a for loop and then report whether convergence
was achieved or not.

14.6 next, break

next is used to skip an iteration of a loop.

for(i in 1:100) {

if(i <= 20) {

Skip the first 20 iterations

next

}

Do something here

}

break is used to exit a loop immediately, regardless of what iteration the loop may be on.

for(i in 1:100) {

print(i)

if(i > 20) {

Stop loop after 20 iterations

break

}

}

14.7 Summary

• Control structures like if, while, and for allow you to control the flow of an R program
• Infinite loops should generally be avoided, even if (you believe) they are theoretically correct.
• Control structures mentioned here are primarily useful for writing programs; for command-
line interactive work, the “apply” functions are more useful.

15. Functions
Writing functions is a core activity of an R programmer. It represents the key step of the transition
from a mere “user” to a developer who creates new functionality for R. Functions are often used
to encapsulate a sequence of expressions that need to be executed numerous times, perhaps under
slightly different conditions. Functions are also often written when code must be shared with others
or the public.

The writing of a function allows a developer to create an interface to the code, that is explicitly
specified with a set of parameters. This interface provides an abstraction of the code to potential
users. This abstraction simplifies the users’ lives because it relieves them from having to know every
detail of how the code operates. In addition, the creation of an interface allows the developer to
communicate to the user the aspects of the code that are important or are most relevant.

15.1 Functions in R

Functions in R are “first class objects”, which means that they can be treated much like any other R
object. Importantly,

• Functions can be passed as arguments to other functions. This is very handy for the various
apply functions, like lapply() and sapply().

• Functions can be nested, so that you can define a function inside of another function

If you’re familiar with common language like C, these features might appear a bit strange. However,
they are really important in R and can be useful for data analysis.

15.2 Your First Function

Functions are defined using the function() directive and are stored as R objects just like anything
else. In particular, they are R objects of class “function”.

Here’s a simple function that takes no arguments and does nothing.

Functions 73

> f <- function() {

+ ## This is an empty function

+ }

> ## Functions have their own class

> class(f)

[1] "function"

> ## Execute this function

> f()

NULL

Not very interesting, but it’s a start. The next thing we can do is create a function that actually has
a non-trivial function body.

> f <- function() {

+ cat("Hello, world!\n")

+ }

> f()

Hello, world!

The last aspect of a basic function is the function arguments. These are the options that you can
specify to the user that the user may explicity set. For this basic function, we can add an argument
that determines how many times “Hello, world!” is printed to the console.

> f <- function(num) {

+ for(i in seq_len(num)) {

+ cat("Hello, world!\n")

+ }

+ }

> f(3)

Hello, world!

Hello, world!

Hello, world!

Obviously, we could have just cut-and-pasted the cat("Hello, world!\n") code three times to
achieve the same effect, but then we wouldn’t be programming, would we? Also, it would be un-
neighborly of you to give your code to someone else and force them to cut-and-paste the code
however many times the need to see “Hello, world!”.

In general, if you find yourself doing a lot of cutting and pasting, that’s usually a good
sign that you might need to write a function.

Finally, the function above doesn’t return anything. It just prints “Hello, world!” to the console num
number of times and then exits. But often it is useful if a function returns something that perhaps
can be fed into another section of code.

This next function returns the total number of characters printed to the console.

Functions 74

> f <- function(num) {

+ hello <- "Hello, world!\n"

+ for(i in seq_len(num)) {

+ cat(hello)

+ }

+ chars <- nchar(hello) * num

+ chars

+ }

> meaningoflife <- f(3)

Hello, world!

Hello, world!

Hello, world!

> print(meaningoflife)

[1] 42

In the above function, we didn’t have to indicate anything special in order for the function to return
the number of characters. In R, the return value of a function is always the very last expression that
is evaluated. Because the chars variable is the last expression that is evaluated in this function, that
becomes the return value of the function.

Note that there is a return() function that can be used to return an explicity value from a function,
but it is rarely used in R (we will discuss it a bit later in this chapter).

Finally, in the above function, the usermust specify the value of the argument num. If it is not specified
by the user, R will throw an error.

> f()

Error in f(): argument "num" is missing, with no default

We canmodify this behavior by setting a default value for the argument num. Any function argument
can have a default value, if you wish to specify it. Sometimes, argument values are rarely modified
(except in special cases) and it makes sense to set a default value for that argument. This relieves the
user from having to specify the value of that argument every single time the function is called.

Here, for example, we could set the default value for num to be 1, so that if the function is called
without the num argument being explicitly specified, then it will print “Hello, world!” to the console
once.

Functions 75

> f <- function(num = 1) {

+ hello <- "Hello, world!\n"

+ for(i in seq_len(num)) {

+ cat(hello)

+ }

+ chars <- nchar(hello) * num

+ chars

+ }

> f() ## Use default value for 'num'

Hello, world!

[1] 14

> f(2) ## Use user-specified value

Hello, world!

Hello, world!

[1] 28

Remember that the function still returns the number of characters printed to the console.

At this point, we have written a function that

• has one formal argument named num with a default value of 1. The formal arguments are the
arguments included in the function definition. The formals() function returns a list of all the
formal arguments of a function

• prints the message “Hello, world!” to the console a number of times indicated by the argument
num

• returns the number of characters printed to the console

Functions have named arguments which can optionally have default values. Because all function
arguments have names, they can be specified using their name.

> f(num = 2)

Hello, world!

Hello, world!

[1] 28

Specifying an argument by its name is sometimes useful if a function hasmany arguments and it may
not always be clear which argument is being specified. Here, our function only has one argument
so there’s no confusion.

15.3 Argument Matching

Calling an R functionwith arguments can be done in a variety of ways. This may be confusing at first,
but it’s really handing when doing interactive work at the command line. R functions arguments can
be matched positionally or by name. Positional matching just means that R assigns the first value
to the first argument, the second value to second argument, etc. So in the following call to rnorm()

Functions 76

> str(rnorm)

function (n, mean = 0, sd = 1)

> mydata <- rnorm(100, 2, 1) ## Generate some data

100 is assigned to the n argument, 2 is assigned to the mean argument, and 1 is assigned to the sd

argument, all by positional matching.

The following calls to the sd() function (which computes the empirical standard deviation of a
vector of numbers) are all equivalent. Note that sd() has two arguments: x indicates the vector of
numbers and na.rm is a logical indicating whether missing values should be removed or not.

> ## Positional match first argument, default for 'na.rm'

> sd(mydata)

[1] 0.9328666

> ## Specify 'x' argument by name, default for 'na.rm'

> sd(x = mydata)

[1] 0.9328666

> ## Specify both arguments by name

> sd(x = mydata, na.rm = FALSE)

[1] 0.9328666

When specifying the function arguments by name, it doesn’t matter in what order you specify them.
In the example below, we specify the na.rm argument first, followed by x, even though x is the first
argument defined in the function definition.

> ## Specify both arguments by name

> sd(na.rm = FALSE, x = mydata)

[1] 0.9328666

You can mix positional matching with matching by name. When an argument is matched by name,
it is “taken out” of the argument list and the remaining unnamed arguments are matched in the
order that they are listed in the function definition.

> sd(na.rm = FALSE, mydata)

[1] 0.9328666

Here, the mydata object is assigned to the x argument, because it’s the only argument not yet
specified.

Below is the argument list for the lm() function, which fits linear models to a dataset.

Functions 77

> args(lm)

function (formula, data, subset, weights, na.action, method = "qr",

model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,

contrasts = NULL, offset, ...)

NULL

The following two calls are equivalent.

lm(data = mydata, y ~ x, model = FALSE, 1:100)

lm(y ~ x, mydata, 1:100, model = FALSE)

Even though it’s legal, I don’t recommend messing around with the order of the arguments too
much, since it can lead to some confusion.

Most of the time, named arguments are useful on the command line when you have a long argument
list and you want to use the defaults for everything except for an argument near the end of the list.
Named arguments also help if you can remember the name of the argument and not its position
on the argument list. For example, plotting functions often have a lot of options to allow for
customization, but this makes it difficult to remember exactly the position of every argument on
the argument list.

Function arguments can also be partially matched, which is useful for interactive work. The order
of operations when given an argument is

1. Check for exact match for a named argument
2. Check for a partial match
3. Check for a positional match

Partial matching should be avoided when writing longer code or programs, because it may lead to
confusion if someone is reading the code. However, partial matching is very useful when calling
functions interactively that have very long argument names.

In addition to not specifying a default value, you can also set an argument value to NULL.

f <- function(a, b = 1, c = 2, d = NULL) {

}

You can check to see whether an R object is NULLwith the is.null() function. It is sometimes useful
to allow an argument to take the NULL value, which might indicate that the function should take
some specific action.

15.4 Lazy Evaluation

Arguments to functions are evaluated lazily, so they are evaluated only as needed in the body of the
function.

In this example, the function f() has two arguments: a and b.

Functions 78

> f <- function(a, b) {

+ a^2

+ }

> f(2)

[1] 4

This function never actually uses the argument b, so calling f(2) will not produce an error because
the 2 gets positionally matched to a. This behavior can be good or bad. It’s common to write a
function that doesn’t use an argument and not notice it simply because R never throws an error.

This example also shows lazy evaluation at work, but does eventually result in an error.

> f <- function(a, b) {

+ print(a)

+ print(b)

+ }

> f(45)

[1] 45

Error in print(b): argument "b" is missing, with no default

Notice that “45” got printed first before the error was triggered. This is because b did not have to
be evaluated until after print(a). Once the function tried to evaluate print(b) the function had to
throw an error.

15.5 The ... Argument

There is a special argument in R known as the ... argument, which indicate a variable number
of arguments that are usually passed on to other functions. The ... argument is often used when
extending another function and you don’t want to copy the entire argument list of the original
function

For example, a custom plotting function may want to make use of the default plot() function along
with its entire argument list. The function below changes the default for the type argument to the
value type = "l" (the original default was type = "p").

myplot <- function(x, y, type = "l", ...) {

plot(x, y, type = type, ...) ## Pass '...' to 'plot' function

}

Generic functions use ... so that extra arguments can be passed to methods.

Functions 79

> mean

function (x, ...)

UseMethod("mean")

<bytecode: 0x7fd20fdd25a8>

<environment: namespace:base>

The ... argument is necessary when the number of arguments passed to the function cannot be
known in advance. This is clear in functions like paste() and cat().

> args(paste)

function (..., sep = " ", collapse = NULL, recycle0 = FALSE)

NULL

> args(cat)

function (..., file = "", sep = " ", fill = FALSE, labels = NULL,

append = FALSE)

NULL

Because both paste() and cat() print out text to the console by combining multiple character
vectors together, it is impossible for those functions to know in advance howmany character vectors
will be passed to the function by the user. So the first argument to either function is

15.6 Arguments Coming After the ... Argument

One catch with ... is that any arguments that appear after ... on the argument list must be named
explicitly and cannot be partially matched or matched positionally.

Take a look at the arguments to the paste() function.

> args(paste)

function (..., sep = " ", collapse = NULL, recycle0 = FALSE)

NULL

With the paste() function, the arguments sep and collapse must be named explicitly and in full if
the default values are not going to be used.

Here I specify that I want “a” and “b” to be pasted together and separated by a colon.

> paste("a", "b", sep = ":")

[1] "a:b"

If I don’t specify the sep argument in full and attempt to rely on partial matching, I don’t get the
expected result.

Functions 80

> paste("a", "b", se = ":")

[1] "a b :"

15.7 Summary

• Functions can be defined using the function() directive and are assigned to R objects just like
any other R object

• Functions have can be defined with named arguments; these function arguments can have
default values

• Functions arguments can be specified by name or by position in the argument list
• Functions always return the last expression evaluated in the function body
• A variable number of arguments can be specified using the special ... argument in a function
definition.

16. Scoping Rules of R
16.1 A Diversion on Binding Values to Symbol

Watch a video of this section¹

How does R know which value to assign to which symbol? When I type

> lm <- function(x) { x * x }

> lm

function(x) { x * x }

how does R know what value to assign to the symbol lm? Why doesn’t it give it the value of lm that
is in the stats package?

When R tries to bind a value to a symbol, it searches through a series of environments to find the
appropriate value. When you are working on the command line and need to retrieve the value of an
R object, the order in which things occur is roughly

1. Search the global environment (i.e. your workspace) for a symbol name matching the one
requested.

2. Search the namespaces of each of the packages on the search list

The search list can be found by using the search() function.

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

The global environment or the user’s workspace is always the first element of the search list and the
base package is always the last. For better or for worse, the order of the packages on the search list
matters, particularly if there are multiple objects with the same name in different packages.

Users can configure which packages get loaded on startup so if you are writing a function (or a
package), you cannot assume that there will be a set list of packages available in a given order.
When a user loads a package with library() the namespace of that package gets put in position 2
of the search list (by default) and everything else gets shifted down the list.

Note that R has separate namespaces for functions and non-functions so it’s possible to have an
object named c and a function named c().

¹https://youtu.be/ujdm01Vsrmo

https://youtu.be/ujdm01Vsrmo
https://youtu.be/ujdm01Vsrmo

Scoping Rules of R 82

16.2 Scoping Rules

The scoping rules for R are the main feature that make it different from the original S language
(in case you care about that). This may seem like an esoteric aspect of R, but it’s one of its more
interesting and useful features.

The scoping rules of a language determine how a value is associated with a free variable in a function.
R uses lexical scoping² or static scoping. An alternative to lexical scoping is dynamic scoping which
is implemented by some languages. Lexical scoping turns out to be particularly useful for simplifying
statistical computations

Related to the scoping rules is how R uses the search list to bind a value to a symbol

Consider the following function.

> f <- function(x, y) {

+ x^2 + y / z

+ }

This function has 2 formal arguments x and y. In the body of the function there is another symbol
z. In this case z is called a free variable.

The scoping rules of a language determine how values are assigned to free variables. Free variables
are not formal arguments and are not local variables (assigned insided the function body).

Lexical scoping in R means that

the values of free variables are searched for in the environment in which the function was
defined.

Okay then, what is an environment?

An environment is a collection of (symbol, value) pairs, i.e. x is a symbol and 3.14might be its value.
Every environment has a parent environment and it is possible for an environment to have multiple
“children”. The only environment without a parent is the empty environment.

A function, together with an environment, makes up what is called a closure or function closure.
Most of the time we don’t need to think too much about a function and its associated environment
(making up the closure), but occasionally, this setup can be very useful. The function closure model
can be used to create functions that “carry around” data with them.

How do we associate a value to a free variable? There is a search process that occurs that goes as
follows:

• If the value of a symbol is not found in the environment in which a function was defined, then
the search is continued in the parent environment.

²http://en.wikipedia.org/wiki/Scope_(computer_science)#Lexical_scope_vs._dynamic_scope

http://en.wikipedia.org/wiki/Scope_(computer_science)#Lexical_scope_vs._dynamic_scope
http://en.wikipedia.org/wiki/Scope_(computer_science)#Lexical_scope_vs._dynamic_scope

Scoping Rules of R 83

• The search continues down the sequence of parent environments until we hit the top-level
environment ; this usually the global environment (workspace) or the namespace of a package.

• After the top-level environment, the search continues down the search list until we hit the
empty environment.

If a value for a given symbol cannot be found once the empty environment is arrived at, then an
error is thrown.

One implication of this search process is that it can be affected by the number of packages you have
attached to the search list. The more packages you have attached, the more symbols R has to sort
through in order to assign a value. That said, you’d have to have a pretty large number of packages
attached in order to notice a real difference in performance.

16.3 Lexical Scoping: Why Does It Matter?

Watch a video of this section³

Typically, a function is defined in the global environment, so that the values of free variables are
just found in the user’s workspace. This behavior is logical for most people and is usually the “right
thing” to do. However, in R you can have functions defined inside other functions (languages like C
don’t let you do this). Now things get interesting—in this case the environment in which a function
is defined is the body of another function!

Here is an example of a function that returns another function as its return value. Remember, in R
functions are treated like any other object and so this is perfectly valid.

> make.power <- function(n) {

+ pow <- function(x) {

+ x^n

+ }

+ pow

+ }

The make.power() function is a kind of “constructor function” that can be used to construct other
functions.

³https://youtu.be/yYzPhtF6--A

https://youtu.be/yYzPhtF6--A
https://youtu.be/yYzPhtF6--A

Scoping Rules of R 84

> cube <- make.power(3)

> square <- make.power(2)

> cube(3)

[1] 27

> square(3)

[1] 9

Let’s take a look at the cube() function’s code.

> cube

function(x) {

x^n

}

<environment: 0x7fcb87f44888>

Notice that cube() has a free variable n. What is the value of n here? Well, its value is taken from
the environment where the function was defined. When I defined the cube() function it was when
I called make.power(3), so the value of n at that time was 3.

We can explore the environment of a function to see what objects are there and their values.

> ls(environment(cube))

[1] "n" "pow"

> get("n", environment(cube))

[1] 3

We can also take a look at the square() function.

> ls(environment(square))

[1] "n" "pow"

> get("n", environment(square))

[1] 2

16.4 Lexical vs. Dynamic Scoping

We can use the following example to demonstrate the difference between lexical and dynamic
scoping rules.

Scoping Rules of R 85

> y <- 10

>

> f <- function(x) {

+ y <- 2

+ y^2 + g(x)

+ }

>

> g <- function(x) {

+ x*y

+ }

What is the value of the following expression?

f(3)

With lexical scoping the value of y in the function g is looked up in the environment in which the
function was defined, in this case the global environment, so the value of y is 10. With dynamic
scoping, the value of y is looked up in the environment from which the function was called
(sometimes referred to as the calling environment). In R the calling environment is known as the
parent frame. In this case, the value of y would be 2.

When a function is defined in the global environment and is subsequently called from the global
environment, then the defining environment and the calling environment are the same. This can
sometimes give the appearance of dynamic scoping.

Consider this example.

> g <- function(x) {

+ a <- 3

+ x+a+y

+ ## 'y' is a free variable

+ }

> g(2)

Error in g(2): object 'y' not found

> y <- 3

> g(2)

[1] 8

Here, y is defined in the global environment, which also happens to be where the function g() is
defined.

There are numerous other languages that support lexical scoping, including

• Scheme
• Perl
• Python

Scoping Rules of R 86

• Common Lisp (all languages converge to Lisp, right?)

Lexical scoping in R has consequences beyond how free variables are looked up. In particular, it’s
the reason that all objects must be stored in memory in R. This is because all functions must carry
a pointer to their respective defining environments, which could be anywhere. In the S language
(R’s close cousin), free variables are always looked up in the global workspace, so everything can be
stored on the disk because the “defining environment” of all functions is the same.

16.5 Application: Optimization

Watch a video of this section⁴

NOTE: This section requires some knowledge of statistical inference and modeling. If you do not
have such knowledge, feel free to skip this section.

Why is any of this information about lexical scoping useful?

Optimization routines in R like optim(), nlm(), and optimize() require you to pass a function whose
argument is a vector of parameters (e.g. a log-likelihood, or a cost function). However, an objective
function that needs to be minimized might depend on a host of other things besides its parameters
(like data). When writing software which does optimization, it may also be desirable to allow the
user to hold certain parameters fixed. The scoping rules of R allow you to abstract away much of
the complexity involved in these kinds of problems.

Here is an example of a “constructor” function that creates a negative log-likelihood function that
can be minimized to find maximum likelihood estimates in a statistical model.

> make.NegLogLik <- function(data, fixed = c(FALSE, FALSE)) {

+ params <- fixed

+ function(p) {

+ params[!fixed] <- p

+ mu <- params[1]

+ sigma <- params[2]

+

+ ## Calculate the Normal density

+ a <- -0.5*length(data)*log(2*pi*sigma^2)

+ b <- -0.5*sum((data-mu)^2) / (sigma^2)

+ -(a + b)

+ }

+ }

Note: Optimization functions in R minimize functions, so you need to use the negative log-
likelihood.

Now we can generate some data and then construct our negative log-likelihood.

⁴https://youtu.be/GCNZrffYLFI

https://youtu.be/GCNZrffYLFI
https://youtu.be/GCNZrffYLFI

Scoping Rules of R 87

> set.seed(1)

> normals <- rnorm(100, 1, 2)

> nLL <- make.NegLogLik(normals)

> nLL

function(p) {

params[!fixed] <- p

mu <- params[1]

sigma <- params[2]

Calculate the Normal density

a <- -0.5*length(data)*log(2*pi*sigma^2)

b <- -0.5*sum((data-mu)^2) / (sigma^2)

-(a + b)

}

<bytecode: 0x7fcb87ef9120>

<environment: 0x7fcba1ec4668>

>

> ## What's in the function environment?

> ls(environment(nLL))

[1] "data" "fixed" "params"

Now that we have our nLL() function, we can try to minimize it with optim() to estimate the
parameters.

> optim(c(mu = 0, sigma = 1), nLL)$par

mu sigma

1.218239 1.787343

You can see that the algorithm converged and obtained an estimate of mu and sigma.

We can also try to estimate one parameter while holding another parameter fixed. Here we fix sigma
to be equal to 2.

> nLL <- make.NegLogLik(normals, c(FALSE, 2))

> optimize(nLL, c(-1, 3))$minimum

[1] 1.217775

Because we now have a one-dimensional problem, we can use the simpler optimize() function
rather than optim().

We can also try to estimate sigma while holding mu fixed at 1.

Scoping Rules of R 88

> nLL <- make.NegLogLik(normals, c(1, FALSE))

> optimize(nLL, c(1e-6, 10))$minimum

[1] 1.800596

16.6 Plotting the Likelihood

Another nice feature that you can take advantage of is plotting the negative log-likelihood to see
how peaked or flat it is.

Here is the function when mu is fixed.

> ## Fix 'mu' to be equalt o 1

> nLL <- make.NegLogLik(normals, c(1, FALSE))

> x <- seq(1.7, 1.9, len = 100)

>

> ## Evaluate 'nLL()' at every point in 'x'

> y <- sapply(x, nLL)

> plot(x, exp(-(y - min(y))), type = "l")

Scoping Rules of R 89

plot of chunk nLLFixMu

Here is the function when sigma is fixed.

Scoping Rules of R 90

> ## Fix 'sigma' to be equal to 2

> nLL <- make.NegLogLik(normals, c(FALSE, 2))

> x <- seq(0.5, 1.5, len = 100)

>

> ## Evaluate 'nLL()' at every point in 'x'

> y <- sapply(x, nLL)

> plot(x, exp(-(y - min(y))), type = "l")

plot of chunk nLLFixSigma

Scoping Rules of R 91

16.7 Summary

• Objective functions can be “built” which contain all of the necessary data for evaluating the
function

• No need to carry around long argument lists — useful for interactive and exploratory work.
• Code can be simplified and cleaned up
• Reference: Robert Gentleman and Ross Ihaka (2000). “Lexical Scope and Statistical Computing,”
JCGS, 9, 491–508.

17. Coding Standards for R
Watch a video of this chapter¹

Coding standards are by no means universal and are often the subject of irrational flame wars on
various language- or project-specific mailing lists. Nevertheless, I will just give you the standards
that I use and the rationale behind them.

Always use text files / text editor. I think we can all agree on this one. Using text files and a text
editor is fundamental to coding. If you’re writing your code in an editor like Microsoft Word, you
need to stop. Interactive development environments like RStudio have nice text editors built in, but
there are many others out there.

Indent your code. Indenting is very important for the readability of your code. Some programming
languages actually require it as part of their syntax, but R does not. Nevertheless, indenting is very
important. How much you should indent is up for debate, but I think each indent should be a
minimum of 4 spaces, and ideally it should be 8 spaces.

Limit the width of your code. I like to limit the width of my text editor so that the code I write
doesn’t fly off into the wilderness on the right hand side. This limitation, along with the 8 space
indentation, forces you to write code that is clean, readable, and naturally broken down intomodular
units. In particular, this combination limits your ability to write very long functions with many
different levels of nesting.

Limit the length of individual functions. If you are writing functions, it’s usually a good idea to
not let your functions run for pages and pages. Typically, purpose of a function is to execute one
activity or idea. If your function is doing lots of things, it probably needs to be broken into multiple
functions. My rule of thumb is that a function should not take up more than one page of your editor
(of course, this depends on the size of your monitor).

¹http://youtu.be/MSPKE1y3cyQ

http://youtu.be/MSPKE1y3cyQ
http://youtu.be/MSPKE1y3cyQ

18. Loop Functions
18.1 Looping on the Command Line

Writing for and while loops is useful when programming but not particularly easy when working
interactively on the command line. Multi-line expressions with curly braces are just not that easy to
sort through when working on the command line. R has some functions which implement looping
in a compact form to make your life easier.

• lapply(): Loop over a list and evaluate a function on each element
• sapply(): Same as lapply but try to simplify the result
• apply(): Apply a function over the margins of an array
• tapply(): Apply a function over subsets of a vector
• mapply(): Multivariate version of lapply

An auxiliary function split is also useful, particularly in conjunction with lapply.

18.2 lapply()

Watch a video of this section¹

The lapply() function does the following simple series of operations:

1. it loops over a list, iterating over each element in that list
2. it applies a function to each element of the list (a function that you specify)
3. and returns a list (the l is for “list”).

This function takes three arguments: (1) a list X; (2) a function (or the name of a function) FUN; (3)
other arguments via its ... argument. If X is not a list, it will be coerced to a list using as.list().

The body of the lapply() function can be seen here.

¹https://youtu.be/E1_NlFb0E4g

https://youtu.be/E1_NlFb0E4g
https://youtu.be/E1_NlFb0E4g

Loop Functions 94

> lapply

function (X, FUN, ...)

{

FUN <- match.fun(FUN)

if (!is.vector(X) || is.object(X))

X <- as.list(X)

.Internal(lapply(X, FUN))

}

<bytecode: 0x7fd2bb92f928>

<environment: namespace:base>

Note that the actual looping is done internally in C code for efficiency reasons.

It’s important to remember that lapply() always returns a list, regardless of the class of the input.

Here’s an example of applying the mean() function to all elements of a list. If the original list has
names, the the names will be preserved in the output.

> x <- list(a = 1:5, b = rnorm(10))

> lapply(x, mean)

$a

[1] 3

$b

[1] 0.1322028

Notice that here we are passing the mean() function as an argument to the lapply() function.
Functions in R can be used this way and can be passed back and forth as arguments just like any
other object. When you pass a function to another function, you do not need to include the open
and closed parentheses () like you do when you are calling a function.

Here is another example of using lapply().

> x <- list(a = 1:4, b = rnorm(10), c = rnorm(20, 1), d = rnorm(100, 5))

> lapply(x, mean)

$a

[1] 2.5

$b

[1] 0.248845

$c

[1] 0.9935285

$d

[1] 5.051388

Loop Functions 95

You can use lapply() to evaluate a function multiple times each with a different argument. Below, is
an example where I call the runif() function (to generate uniformly distributed random variables)
four times, each time generating a different number of random numbers.

> x <- 1:4

> lapply(x, runif)

[[1]]

[1] 0.02778712

[[2]]

[1] 0.5273108 0.8803191

[[3]]

[1] 0.37306337 0.04795913 0.13862825

[[4]]

[1] 0.3214921 0.1548316 0.1322282 0.2213059

When you pass a function to lapply(), lapply() takes elements of the list and passes them as the
first argument of the function you are applying. In the above example, the first argument of runif()
is n, and so the elements of the sequence 1:4 all got passed to the n argument of runif().

Functions that you pass to lapply() may have other arguments. For example, the runif() function
has a min and max argument too. In the example above I used the default values for min and max.
How would you be able to specify different values for that in the context of lapply()?

Here is where the ... argument to lapply() comes into play. Any arguments that you place in the
... argument will get passed down to the function being applied to the elements of the list.

Here, the min = 0 and max = 10 arguments are passed down to runif() every time it gets called.

> x <- 1:4

> lapply(x, runif, min = 0, max = 10)

[[1]]

[1] 2.263808

[[2]]

[1] 1.314165 9.815635

[[3]]

[1] 3.270137 5.069395 6.814425

[[4]]

[1] 0.9916910 1.1890256 0.5043966 9.2925392

So now, instead of the random numbers being between 0 and 1 (the default), the are all between 0
and 10.

Loop Functions 96

The lapply() function and its friends make heavy use of anonymous functions. Anonymous
functions are like members of Project Mayhem²—they have no names. These are functions are
generated “on the fly” as you are using lapply(). Once the call to lapply() is finished, the function
disappears and does not appear in the workspace.

Here I am creating a list that contains two matrices.

> x <- list(a = matrix(1:4, 2, 2), b = matrix(1:6, 3, 2))

> x

$a

[,1] [,2]

[1,] 1 3

[2,] 2 4

$b

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

Suppose I wanted to extract the first column of each matrix in the list. I could write an anonymous
function for extracting the first column of each matrix.

> lapply(x, function(elt) { elt[,1] })

$a

[1] 1 2

$b

[1] 1 2 3

Notice that I put the function() definition right in the call to lapply(). This is perfectly legal and
acceptable. You can put an arbitrarily complicated function definition inside lapply(), but if it’s
going to be more complicated, it’s probably a better idea to define the function separately.

For example, I could have done the following.

²http://en.wikipedia.org/wiki/Fight_Club

http://en.wikipedia.org/wiki/Fight_Club
http://en.wikipedia.org/wiki/Fight_Club

Loop Functions 97

> f <- function(elt) {

+ elt[, 1]

+ }

> lapply(x, f)

$a

[1] 1 2

$b

[1] 1 2 3

Now the function is no longer anonymous; it’s name is f. Whether you use an anonymous function
or you define a function first depends on your context. If you think the function f is something
you’re going to need a lot in other parts of your code, you might want to define it separately. But if
you’re just going to use it for this call to lapply(), then it’s probably simpler to use an anonymous
function.

18.3 sapply()

The sapply() function behaves similarly to lapply(); the only real difference is in the return value.
sapply() will try to simplify the result of lapply() if possible. Essentially, sapply() calls lapply()
on its input and then applies the following algorithm:

• If the result is a list where every element is length 1, then a vector is returned
• If the result is a list where every element is a vector of the same length (> 1), a matrix is returned.
• If it can’t figure things out, a list is returned

Here’s the result of calling lapply().

> x <- list(a = 1:4, b = rnorm(10), c = rnorm(20, 1), d = rnorm(100, 5))

> lapply(x, mean)

$a

[1] 2.5

$b

[1] -0.251483

$c

[1] 1.481246

$d

[1] 4.968715

Notice that lapply() returns a list (as usual), but that each element of the list has length 1.

Here’s the result of calling sapply() on the same list.

Loop Functions 98

> sapply(x, mean)

a b c d

2.500000 -0.251483 1.481246 4.968715

Because the result of lapply() was a list where each element had length 1, sapply() collapsed the
output into a numeric vector, which is often more useful than a list.

18.4 split()

Watch a video of this section³

The split() function takes a vector or other objects and splits it into groups determined by a factor
or list of factors.

The arguments to split() are

> str(split)

function (x, f, drop = FALSE, ...)

where

• x is a vector (or list) or data frame
• f is a factor (or coerced to one) or a list of factors
• drop indicates whether empty factors levels should be dropped

The combination of split() and a function like lapply() or sapply() is a common paradigm in R.
The basic idea is that you can take a data structure, split it into subsets defined by another variable,
and apply a function over those subsets. The results of applying tha function over the subsets are
then collated and returned as an object. This sequence of operations is sometimes referred to as
“map-reduce” in other contexts.

Here we simulate some data and split it according to a factor variable. Note that we use the gl()

function to “generate levels” in a factor variable.

³https://youtu.be/TjwE5b0fOcs

https://youtu.be/TjwE5b0fOcs
https://youtu.be/TjwE5b0fOcs

Loop Functions 99

> x <- c(rnorm(10), runif(10), rnorm(10, 1))

> f <- gl(3, 10)

> split(x, f)

$`1`

[1] 0.3981302 -0.4075286 1.3242586 -0.7012317 -0.5806143 -1.0010722

[7] -0.6681786 0.9451850 0.4337021 1.0051592

$`2`

[1] 0.34822440 0.94893818 0.64667919 0.03527777 0.59644846 0.41531800

[7] 0.07689704 0.52804888 0.96233331 0.70874005

$`3`

[1] 1.13444766 1.76559900 1.95513668 0.94943430 0.69418458 1.89367370

[7] -0.04729815 2.97133739 0.61636789 2.65414530

A common idiom is split followed by an lapply.

> lapply(split(x, f), mean)

$`1`

[1] 0.07478098

$`2`

[1] 0.5266905

$`3`

[1] 1.458703

18.5 Splitting a Data Frame

> library(datasets)

> head(airquality)

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

We can split the airquality data frame by the Month variable so that we have separate sub-data
frames for each month.

Loop Functions 100

> s <- split(airquality, airquality$Month)

> str(s)

List of 5

$ 5:'data.frame': 31 obs. of 6 variables:

..$ Ozone : int [1:31] 41 36 12 18 NA 28 23 19 8 NA ...

..$ Solar.R: int [1:31] 190 118 149 313 NA NA 299 99 19 194 ...

..$ Wind : num [1:31] 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...

..$ Temp : int [1:31] 67 72 74 62 56 66 65 59 61 69 ...

..$ Month : int [1:31] 5 5 5 5 5 5 5 5 5 5 ...

..$ Day : int [1:31] 1 2 3 4 5 6 7 8 9 10 ...

$ 6:'data.frame': 30 obs. of 6 variables:

..$ Ozone : int [1:30] NA NA NA NA NA NA 29 NA 71 39 ...

..$ Solar.R: int [1:30] 286 287 242 186 220 264 127 273 291 323 ...

..$ Wind : num [1:30] 8.6 9.7 16.1 9.2 8.6 14.3 9.7 6.9 13.8 11.5 ...

..$ Temp : int [1:30] 78 74 67 84 85 79 82 87 90 87 ...

..$ Month : int [1:30] 6 6 6 6 6 6 6 6 6 6 ...

..$ Day : int [1:30] 1 2 3 4 5 6 7 8 9 10 ...

$ 7:'data.frame': 31 obs. of 6 variables:

..$ Ozone : int [1:31] 135 49 32 NA 64 40 77 97 97 85 ...

..$ Solar.R: int [1:31] 269 248 236 101 175 314 276 267 272 175 ...

..$ Wind : num [1:31] 4.1 9.2 9.2 10.9 4.6 10.9 5.1 6.3 5.7 7.4 ...

..$ Temp : int [1:31] 84 85 81 84 83 83 88 92 92 89 ...

..$ Month : int [1:31] 7 7 7 7 7 7 7 7 7 7 ...

..$ Day : int [1:31] 1 2 3 4 5 6 7 8 9 10 ...

$ 8:'data.frame': 31 obs. of 6 variables:

..$ Ozone : int [1:31] 39 9 16 78 35 66 122 89 110 NA ...

..$ Solar.R: int [1:31] 83 24 77 NA NA NA 255 229 207 222 ...

..$ Wind : num [1:31] 6.9 13.8 7.4 6.9 7.4 4.6 4 10.3 8 8.6 ...

..$ Temp : int [1:31] 81 81 82 86 85 87 89 90 90 92 ...

..$ Month : int [1:31] 8 8 8 8 8 8 8 8 8 8 ...

..$ Day : int [1:31] 1 2 3 4 5 6 7 8 9 10 ...

$ 9:'data.frame': 30 obs. of 6 variables:

..$ Ozone : int [1:30] 96 78 73 91 47 32 20 23 21 24 ...

..$ Solar.R: int [1:30] 167 197 183 189 95 92 252 220 230 259 ...

..$ Wind : num [1:30] 6.9 5.1 2.8 4.6 7.4 15.5 10.9 10.3 10.9 9.7 ...

..$ Temp : int [1:30] 91 92 93 93 87 84 80 78 75 73 ...

..$ Month : int [1:30] 9 9 9 9 9 9 9 9 9 9 ...

..$ Day : int [1:30] 1 2 3 4 5 6 7 8 9 10 ...

Then we can take the column means for Ozone, Solar.R, and Wind for each sub-data frame.

Loop Functions 101

> lapply(s, function(x) {

+ colMeans(x[, c("Ozone", "Solar.R", "Wind")])

+ })

$`5`

Ozone Solar.R Wind

NA NA 11.62258

$`6`

Ozone Solar.R Wind

NA 190.16667 10.26667

$`7`

Ozone Solar.R Wind

NA 216.483871 8.941935

$`8`

Ozone Solar.R Wind

NA NA 8.793548

$`9`

Ozone Solar.R Wind

NA 167.4333 10.1800

Using sapply() might be better here for a more readable output.

> sapply(s, function(x) {

+ colMeans(x[, c("Ozone", "Solar.R", "Wind")])

+ })

5 6 7 8 9

Ozone NA NA NA NA NA

Solar.R NA 190.16667 216.483871 NA 167.4333

Wind 11.62258 10.26667 8.941935 8.793548 10.1800

Unfortunately, there are NAs in the data so we cannot simply take the means of those variables.
However, we can tell the colMeans function to remove the NAs before computing the mean.

> sapply(s, function(x) {

+ colMeans(x[, c("Ozone", "Solar.R", "Wind")],

+ na.rm = TRUE)

+ })

5 6 7 8 9

Ozone 23.61538 29.44444 59.115385 59.961538 31.44828

Solar.R 181.29630 190.16667 216.483871 171.857143 167.43333

Wind 11.62258 10.26667 8.941935 8.793548 10.18000

Occasionally, we may want to split an R object according to levels defined in more than one variable.
We can do this by creating an interaction of the variables with the interaction() function.

Loop Functions 102

> x <- rnorm(10)

> f1 <- gl(2, 5)

> f2 <- gl(5, 2)

> f1

[1] 1 1 1 1 1 2 2 2 2 2

Levels: 1 2

> f2

[1] 1 1 2 2 3 3 4 4 5 5

Levels: 1 2 3 4 5

> ## Create interaction of two factors

> interaction(f1, f2)

[1] 1.1 1.1 1.2 1.2 1.3 2.3 2.4 2.4 2.5 2.5

Levels: 1.1 2.1 1.2 2.2 1.3 2.3 1.4 2.4 1.5 2.5

With multiple factors and many levels, creating an interaction can result in many levels that are
empty.

> str(split(x, list(f1, f2)))

List of 10

$ 1.1: num [1:2] 1.512 0.083

$ 2.1: num(0)

$ 1.2: num [1:2] 0.567 -1.025

$ 2.2: num(0)

$ 1.3: num 0.323

$ 2.3: num 1.04

$ 1.4: num(0)

$ 2.4: num [1:2] 0.0991 -0.4541

$ 1.5: num(0)

$ 2.5: num [1:2] -0.6558 -0.0359

Notice that there are 4 categories with no data. But we can drop empty levels when we call the
split() function.

> str(split(x, list(f1, f2), drop = TRUE))

List of 6

$ 1.1: num [1:2] 1.512 0.083

$ 1.2: num [1:2] 0.567 -1.025

$ 1.3: num 0.323

$ 2.3: num 1.04

$ 2.4: num [1:2] 0.0991 -0.4541

$ 2.5: num [1:2] -0.6558 -0.0359

18.6 tapply

Watch a video of this section⁴
⁴https://youtu.be/6YEPWjbk3GA

https://youtu.be/6YEPWjbk3GA
https://youtu.be/6YEPWjbk3GA

Loop Functions 103

tapply() is used to apply a function over subsets of a vector. It can be thought of as a combination
of split() and sapply() for vectors only. I’ve been told that the “t” in tapply() refers to “table”,
but that is unconfirmed.

> str(tapply)

function (X, INDEX, FUN = NULL, ..., default = NA, simplify = TRUE)

The arguments to tapply() are as follows:

• X is a vector
• INDEX is a factor or a list of factors (or else they are coerced to factors)
• FUN is a function to be applied
• … contains other arguments to be passed FUN

• simplify, should we simplify the result?

Given a vector of numbers, one simple operation is to take group means.

> ## Simulate some data

> x <- c(rnorm(10), runif(10), rnorm(10, 1))

> ## Define some groups with a factor variable

> f <- gl(3, 10)

> f

[1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

Levels: 1 2 3

> tapply(x, f, mean)

1 2 3

0.1896235 0.5336667 0.9568236

We can also take the group means without simplifying the result, which will give us a list. For
functions that return a single value, usually, this is not what we want, but it can be done.

> tapply(x, f, mean, simplify = FALSE)

$`1`

[1] 0.1896235

$`2`

[1] 0.5336667

$`3`

[1] 0.9568236

We can also apply functions that return more than a single value. In this case, tapply() will not
simplify the result and will return a list. Here’s an example of finding the range of each sub-group.

Loop Functions 104

> tapply(x, f, range)

$`1`

[1] -1.869789 1.497041

$`2`

[1] 0.09515213 0.86723879

$`3`

[1] -0.5690822 2.3644349

18.7 apply()

Watch a video of this section⁵

The apply() function is used to a evaluate a function (often an anonymous one) over the margins
of an array. It is most often used to apply a function to the rows or columns of a matrix (which is
just a 2-dimensional array). However, it can be used with general arrays, for example, to take the
average of an array of matrices. Using apply() is not really faster than writing a loop, but it works
in one line and is highly compact.

> str(apply)

function (X, MARGIN, FUN, ..., simplify = TRUE)

The arguments to apply() are

• X is an array
• MARGIN is an integer vector indicating which margins should be “retained”.
• FUN is a function to be applied
• ... is for other arguments to be passed to FUN

Here I create a 20 by 10 matrix of Normal random numbers. I then compute the mean of each column.

> x <- matrix(rnorm(200), 20, 10)

> apply(x, 2, mean) ## Take the mean of each column

[1] 0.02218266 -0.15932850 0.09021391 0.14723035 -0.22431309 -0.49657847

[7] 0.30095015 0.07703985 -0.20818099 0.06809774

I can also compute the sum of each row.

⁵https://youtu.be/F54ixFPq_xQ

https://youtu.be/F54ixFPq_xQ
https://youtu.be/F54ixFPq_xQ

Loop Functions 105

> apply(x, 1, sum) ## Take the mean of each row

[1] -0.48483448 5.33222301 -3.33862932 -1.39998450 2.37859098 0.01082604

[7] -6.29457190 -0.26287700 0.71133578 -3.38125293 -4.67522818 3.01900232

[13] -2.39466347 -2.16004389 5.33063755 -2.92024635 3.52026401 -1.84880901

[19] -4.10213912 5.30667310

Note that in both calls to apply(), the return value was a vector of numbers.

You’ve probably noticed that the second argument is either a 1 or a 2, depending on whether we
want row statistics or column statistics. What exactly is the second argument to apply()?

The MARGIN argument essentially indicates to apply() which dimension of the array you want to
preserve or retain. So when taking the mean of each column, I specify

> apply(x, 2, mean)

because I want to collapse the first dimension (the rows) by taking the mean and I want to preserve
the number of columns. Similarly, when I want the row sums, I run

> apply(x, 1, mean)

because I want to collapse the columns (the second dimension) and preserve the number of rows
(the first dimension).

18.8 Col/Row Sums and Means

For the special case of column/row sums and column/row means of matrices, we have some useful
shortcuts.

• rowSums = apply(x, 1, sum)

• rowMeans = apply(x, 1, mean)

• colSums = apply(x, 2, sum)

• colMeans = apply(x, 2, mean)

The shortcut functions are heavily optimized and hence are much faster, but you probably won’t
notice unless you’re using a large matrix. Another nice aspect of these functions is that they are a
bit more descriptive. It’s arguably more clear to write colMeans(x) in your code than apply(x, 2,

mean).

18.9 Other Ways to Apply

You can do more than take sums and means with the apply() function. For example, you can
compute quantiles of the rows of a matrix using the quantile() function.

Loop Functions 106

> x <- matrix(rnorm(200), 20, 10)

> ## Get row quantiles

> apply(x, 1, quantile, probs = c(0.25, 0.75))

[,1] [,2] [,3] [,4] [,5] [,6]

25% -1.0884151 -0.6693040 0.2908481 -0.4602083 -1.0432010 -1.12773555

75% 0.1843547 0.8210295 1.3667301 0.4424153 0.3571219 0.03653687

[,7] [,8] [,9] [,10] [,11] [,12] [,13]

25% -1.4571706 -0.2406991 -0.3226845 -0.329898 -0.8677524 -0.2023664 -0.9796050

75% -0.1705336 0.6504486 1.1460854 1.247092 0.4138139 0.9145331 0.5448777

[,14] [,15] [,16] [,17] [,18] [,19]

25% -1.3551031 -0.1823252 -1.260911898 -0.9954289 -0.3767354 -0.8557544

75% -0.5396766 0.7795571 0.002908451 0.4323192 0.7542638 0.5440158

[,20]

25% -0.7000363

75% 0.5432995

Notice that I had to pass the probs = c(0.25, 0.75) argument to quantile() via the ... argument
to apply().

For a higher dimensional example, I can create an array of 2×2matrices and the compute the average
of the matrices in the array.

> a <- array(rnorm(2 * 2 * 10), c(2, 2, 10))

> apply(a, c(1, 2), mean)

[,1] [,2]

[1,] 0.1681387 -0.1039673

[2,] 0.3519741 -0.4029737

In the call to apply() here, I indicated via the MARGIN argument that I wanted to preserve the first
and second dimensions and to collapse the third dimension by taking the mean.

There is a faster way to do this specific operation via the colMeans() function.

> rowMeans(a, dims = 2) ## Faster

[,1] [,2]

[1,] 0.1681387 -0.1039673

[2,] 0.3519741 -0.4029737

In this situation, I might argue that the use of rowMeans() is less readable, but it is substantially
faster with large arrays.

18.10 mapply()

Watch a video of this section⁶
⁶https://youtu.be/z8jC_h7S0VE

https://youtu.be/z8jC_h7S0VE
https://youtu.be/z8jC_h7S0VE

Loop Functions 107

The mapply() function is a multivariate apply of sorts which applies a function in parallel over a set
of arguments. Recall that lapply() and friends only iterate over a single R object. What if you want
to iterate over multiple R objects in parallel? This is what mapply() is for.

> str(mapply)

function (FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)

The arguments to mapply() are

• FUN is a function to apply
• ... contains R objects to apply over
• MoreArgs is a list of other arguments to FUN.
• SIMPLIFY indicates whether the result should be simplified

The mapply() function has a different argument order from lapply() because the function to apply
comes first rather than the object to iterate over. The R objects over which we apply the function
are given in the ... argument because we can apply over an arbitrary number of R objects.

For example, the following is tedious to type

list(rep(1, 4), rep(2, 3), rep(3, 2), rep(4, 1))

With mapply(), instead we can do

> mapply(rep, 1:4, 4:1)

[[1]]

[1] 1 1 1 1

[[2]]

[1] 2 2 2

[[3]]

[1] 3 3

[[4]]

[1] 4

This passes the sequence 1:4 to the first argument of rep() and the sequence 4:1 to the second
argument.

Here’s another example for simulating randon Normal variables.

Loop Functions 108

> noise <- function(n, mean, sd) {

+ rnorm(n, mean, sd)

+ }

> ## Simulate 5 randon numbers

> noise(5, 1, 2)

[1] -0.5196913 3.2979182 -0.6849525 1.7828267 2.7827545

>

> ## This only simulates 1 set of numbers, not 5

> noise(1:5, 1:5, 2)

[1] -1.670517 2.796247 2.776826 5.351488 3.422804

Here we can use mapply() to pass the sequence 1:5 separately to the noise() function so that we
can get 5 sets of random numbers, each with a different length and mean.

> mapply(noise, 1:5, 1:5, 2)

[[1]]

[1] 0.8260273

[[2]]

[1] 4.764568 2.336980

[[3]]

[1] 4.6463819 2.5582108 0.9412167

[[4]]

[1] 3.978149 1.550018 -1.192223 6.338245

[[5]]

[1] 2.826182 1.347834 6.990564 4.976276 3.800743

The above call to mapply() is the same as

> list(noise(1, 1, 2), noise(2, 2, 2),

+ noise(3, 3, 2), noise(4, 4, 2),

+ noise(5, 5, 2))

[[1]]

[1] 0.644104

[[2]]

[1] 1.148037 3.993318

[[3]]

[1] 4.4553214 -0.4532612 3.7067970

[[4]]

[1] 5.4536273 5.3365220 -0.8486346 3.5292851

Loop Functions 109

[[5]]

[1] 8.959267 6.593589 1.581448 1.672663 5.982219

18.11 Vectorizing a Function

The mapply() function can be use to automatically “vectorize” a function. What this means is that it
can be used to take a function that typically only takes single arguments and create a new function
that can take vector arguments. This is often needed when you want to plot functions.

Here’s an example of a function that computes the sum of squares given some data, amean parameter
and a standard deviation. The formula is

∑n
i=1(xi − µ)2/σ2.

> sumsq <- function(mu, sigma, x) {

+ sum(((x - mu) / sigma)^2)

+ }

This function takes a mean mu, a standard deviation sigma, and some data in a vector x.

In many statistical applications, we want to minimize the sum of squares to find the optimal mu and
sigma. Before we do that, we may want to evaluate or plot the function for many different values
of mu or sigma. However, passing a vector of mus or sigmas won’t work with this function because
it’s not vectorized.

> x <- rnorm(100) ## Generate some data

> sumsq(1:10, 1:10, x) ## This is not what we want

[1] 110.2594

Note that the call to sumsq() only produced one value instead of 10 values.

However, we can do what we want to do by using mapply().

> mapply(sumsq, 1:10, 1:10, MoreArgs = list(x = x))

[1] 196.2289 121.4765 108.3981 104.0788 102.1975 101.2393 100.6998 100.3745

[9] 100.1685 100.0332

There’s even a function in R called Vectorize() that automatically can create a vectorized version
of your function. So we could create a vsumsq() function that is fully vectorized as follows.

Loop Functions 110

> vsumsq <- Vectorize(sumsq, c("mu", "sigma"))

> vsumsq(1:10, 1:10, x)

[1] 196.2289 121.4765 108.3981 104.0788 102.1975 101.2393 100.6998 100.3745

[9] 100.1685 100.0332

Pretty cool, right?

18.12 Summary

• The loop functions in R are very powerful because they allow you to conduct a series of
operations on data using a compact form

• The operation of a loop function involves iterating over an R object (e.g. a list or vector or
matrix), applying a function to each element of the object, and the collating the results and
returning the collated results.

• Loop functions make heavy use of anonymous functions, which exist for the life of the loop
function but are not stored anywhere

• The split() function can be used to divide an R object in to subsets determined by another
variable which can subsequently be looped over using loop functions.

19. Regular Expressions
Watch a video of this chapter¹

19.1 Before You Begin

If you want a very quick introduction to the general notion of regular expressions and how they can
be used to process text (as opposed to how to implement them specifically in R), you should watch
this lecture² first.

19.2 Primary R Functions

The primary R functions for dealing with regular expressions are

• grep(), grepl(): These functions search for matches of a regular expression/pattern in a
character vector. grep() returns the indices into the character vector that contain a match
or the specific strings that happen to have the match. grepl() returns a TRUE/FALSE vector
indicating which elements of the character vector contain a match

• regexpr(), gregexpr(): Search a character vector for regular expression matches and return
the indices of the string where the match begins and the length of the match

• sub(), gsub(): Search a character vector for regular expression matches and replace that match
with another string

• regexec(): This function searches a character vector for a regular expression, much like
regexpr(), but it will additionally return the locations of any parenthesized sub-expressions.
Probably easier to explain through demonstration.

For this chapter, we will use a running example using data from homicides in Baltimore City. The
Baltimore Sun newspaper collects information on all homicides that occur in the city (it also reports
on many of them). That data is collected and presented in a map that is publically available³. I
encourage you to go look at the web site/map to get a sense of what kinds of data are presented
there. Unfortunately, the data on the web site are not particularly amenable to analysis, so I’ve
scraped the data and put it in a separate file. The data in this file contain data from January 2007 to
October 2013.

Here is an excerpt of the Baltimore City homicides dataset:

¹https://www.youtube.com/watch?v=q8SzNKib5-4
²https://www.youtube.com/watch?v=NvHjYOilOf8
³http://data.baltimoresun.com/bing-maps/homicides/

https://www.youtube.com/watch?v=q8SzNKib5-4
https://www.youtube.com/watch?v=NvHjYOilOf8
http://data.baltimoresun.com/bing-maps/homicides/
https://www.youtube.com/watch?v=q8SzNKib5-4
https://www.youtube.com/watch?v=NvHjYOilOf8
http://data.baltimoresun.com/bing-maps/homicides/

Regular Expressions 112

> homicides <- readLines("homicides.txt")

>

> ## Total number of events recorded

> length(homicides)

[1] 1571

> homicides[1]

[1] "39.311024, -76.674227, iconHomicideShooting, 'p2', '<dl><dt>Leon Nelson</dt><dd class=\"a\

ddress\">3400 Clifton Ave.
Baltimore, MD 21216</dd><dd>black male, 17 years old</dd><dd>F\

ound on January 1, 2007</dd><dd>Victim died at Shock Trauma</dd><dd>Cause: shooting</dd></dl>'\

"

> homicides[1000]

[1] "39.33626300000, -76.55553990000, icon_homicide_shooting, 'p1200', '<dl><dt><a href=\"http\

://essentials.baltimoresun.com/micro_sun/homicides/victim/1200/davon-diggs\">Davon Diggs</\

dt><dd class=\"address\">4100 Parkwood Ave
Baltimore, MD 21206</dd><dd>Race: Black
G\

ender: male
Age: 21 years old</dd><dd>Found on November 5, 2011</dd><dd>Victim died at J\

ohns Hopkins Bayview Medical Center </dd><dd>Cause: Shooting</dd><dd class=\"popup-note\"><p>O\

riginally reported in 5000 Belair Road; later determined to be rear alley of 4100 block Parkwo\

od</p></dd></dl>'"

The data set is formatted so that each homicide is presented on a single line of text. So when we read
the data in with readLines(), each element of the character vector represents one homicide event.
Notice that the data are riddled with HTML tags because they were scraped directly from the web
site.

A few interesting features stand out: We have the latitude and longitude of where the victim was
found; then there’s the street address; the age, race, and gender of the victim; the date on which the
victim was found; in which hospital the victim ultimately died; the cause of death.

19.3 grep()

Suppose we wanted to identify the records for all the victims of shootings (as opposed to other
causes)? How could we do that? From the map we know that for each cause of death there is a
different icon/flag placed on the map. In particular, they are different colors. You can see that is
indicated in the dataset for shooting deaths with a iconHomicideShooting label. Perhaps we can use
this aspect of the data to idenfity all of the shootings.

Here I use grep() to match the literal iconHomicideShooting into the character vector of homicides.

> g <- grep("iconHomicideShooting", homicides)

> length(g)

[1] 228

Using this approach I get 228 shooting deaths. However, I notice that for some of the entries, the
indicator for the homicide “flag” is noted as icon_homicide_shooting. It’s not uncommon over time
for web site maintainers to change the names of files or update files. What happens if we now grep()

on both icon names using the | operator?

Regular Expressions 113

> g <- grep("iconHomicideShooting|icon_homicide_shooting", homicides)

> length(g)

[1] 1263

Nowwe have 1263 shooting deaths, which is quite a bit more. In fact, the vast majority of homicides
in Baltimore are shooting deaths.

Another possible way to do this is to grep() on the cause of death field, which seems to have the
format Cause: shooting. We can grep() on this literally and get

> g <- grep("Cause: shooting", homicides)

> length(g)

[1] 228

Notice that we seem to be undercounting again. This is because for some of the entries, the word
“shooting” uses a captial “S” while other entries use a lower case “s”. We can handle this variation
by using a character class in our regular expression.

> g <- grep("Cause: [Ss]hooting", homicides)

> length(g)

[1] 1263

One thing you have to be careful of when processing text data is not not grep() things out of context.
For example, suppose we just grep()-ed on the expression [Ss]hooting.

> g <- grep("[Ss]hooting", homicides)

> length(g)

[1] 1265

Notice that we see to pick up 2 extra homicides this way. We can figure out which ones they are by
comparing the results of the two expressions.

First we can get the indices for the first expresssion match.

> i <- grep("[cC]ause: [Ss]hooting", homicides)

> str(i)

int [1:1263] 1 2 6 7 8 9 10 11 12 13 ...

Then we can get the indices for just matching on [Ss]hooting.

Regular Expressions 114

> j <- grep("[Ss]hooting", homicides)

> str(j)

int [1:1265] 1 2 6 7 8 9 10 11 12 13 ...

Now we just need to identify which are the entries that the vectors i and j do not have in common.

> setdiff(i, j)

integer(0)

> setdiff(j, i)

[1] 318 859

Here we can see that the index vector j has two entries that are not in i: entries 318, 859. We can
take a look at these entries directly to see what makes them different.

> homicides[859]

[1] "39.33743900000, -76.66316500000, icon_homicide_bluntforce, 'p914', '<dl><dt><a href=\"htt\

p://essentials.baltimoresun.com/micro_sun/homicides/victim/914/steven-harris\">Steven Harris</\

a></dt><dd class=\"address\">4200 Pimlico Road
Baltimore, MD 21215</dd><dd>Race: Black<br\

/>Gender: male
Age: 38 years old</dd><dd>Found on July 29, 2010</dd><dd>Victim died at S\

cene</dd><dd>Cause: Blunt Force</dd><dd class=\"popup-note\"><p>Harris was found dead July 22 \

and ruled a shooting victim; an autopsy subsequently showed that he had not been shot,...</dd>\

</dl>'"

Here we can see that the word “shooting” appears in the narrative text that accompanies the data,
but the ultimate cause of death was in fact blunt force.

When developing a regular expression to extract entries from a large dataset, it’s important that you
understand the formatting of the dataset well enough so that you can develop a specific expression
that doesn’t accidentally grep data out of context.

Sometimes we want to identify elements of a character vector that match a pattern, but instead of
returning their indices we want the actual values that satisfy the match. For example, we may want
to identify all of the states in the United States whose names start with “New”.

> grep("^New", state.name)

[1] 29 30 31 32

This gives us the indices into the state.name variable that match, but setting value = TRUE returns
the actual elements of the character vector that match.

Regular Expressions 115

> grep("^New", state.name, value = TRUE)

[1] "New Hampshire" "New Jersey" "New Mexico" "New York"

19.4 grepl()

The function grepl() works much like grep() except that it differs in its return value. grepl()
returns a logical vector indicating which element of a character vector contains the match. For
example, suppose we want to know which states in the United States begin with word “New”.

> g <- grepl("^New", state.name)

> g

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[25] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[49] FALSE FALSE

> state.name[g]

[1] "New Hampshire" "New Jersey" "New Mexico" "New York"

Here, we can see that grepl() returns a logical vector that can be used to subset the original
state.name vector.

19.5 regexpr()

Both the grep() and the grepl() functions have some limitations. In particular, both functions tell
you which strings in a character vector match a certain pattern but they don’t tell you exactly where
the match occurs or what the match is for a more complicated regular expression.

The regexpr() function gives you the (a) index into each string where the match begins and the (b)
length of the match for that string. regexpr() only gives you the first match of the string (reading
left to right). gregexpr() will give you all of the matches in a given string if there are is more than
one match.

In our Baltimore City homicides dataset, we might be interested in finding the date on which each
victim was found. Taking a look at the dataset

Regular Expressions 116

> homicides[1]

[1] "39.311024, -76.674227, iconHomicideShooting, 'p2', '<dl><dt>Leon Nelson</dt><dd class=\"a\

ddress\">3400 Clifton Ave.
Baltimore, MD 21216</dd><dd>black male, 17 years old</dd><dd>F\

ound on January 1, 2007</dd><dd>Victim died at Shock Trauma</dd><dd>Cause: shooting</dd></dl>'\

"

it seems that we might be able to just grep on the word “Found”. However, the word “found” may be
found elsewhere in the entry, such as in this entry, where the word “found” appears in the narrative
text at the end.

> homicides[954]

[1] "39.30677400000, -76.59891100000, icon_homicide_shooting, 'p816', '<dl><dt><a href=\"http:\

//essentials.baltimoresun.com/micro_sun/homicides/victim/816/kenly-wheeler\">Kenly Wheeler\

</dt><dd class=\"address\">1400 N Caroline St
Baltimore, MD 21213</dd><dd>Race: Black<br \

/>Gender: male
Age: 29 years old</dd><dd>Found on March 3, 2010</dd><dd>Victim died at S\

cene</dd><dd>Cause: Shooting</dd><dd class=\"popup-note\"><p>Wheeler\\'s body was found o\

n the grounds of Dr. Bernard Harris Sr. Elementary School</p></dd></dl>'"

But we can see that the date is typically preceded by “Found on” and is surrounded by <dd></dd>

tags, so let’s use the pattern <dd>[F|f]ound(.*)</dd> and see what it brings up.

> regexpr("<dd>[F|f]ound(.*)</dd>", homicides[1:10])

[1] 177 178 188 189 178 182 178 187 182 183

attr(,"match.length")

[1] 93 86 89 90 89 84 85 84 88 84

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

We can use the substr() function to extract the first match in the first string.

> substr(homicides[1], 177, 177 + 93 - 1)

[1] "<dd>Found on January 1, 2007</dd><dd>Victim died at Shock Trauma</dd><dd>Cause: shooting<\

/dd>"

Immediately, we can see that the regular expression picked up too much information. This is because
the previous pattern was too greedy and matched too much of the string. We need to use the ?

metacharacter to make the regular expression “lazy” so that it stops at the first </dd> tag.

Regular Expressions 117

> regexpr("<dd>[F|f]ound(.*?)</dd>", homicides[1:10])

[1] 177 178 188 189 178 182 178 187 182 183

attr(,"match.length")

[1] 33 33 33 33 33 33 33 33 33 33

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

Now when we look at the substrings indicated by the regexpr() output, we get

> substr(homicides[1], 177, 177 + 33 - 1)

[1] "<dd>Found on January 1, 2007</dd>"

While it’s straightforward to take the output of regexpr() and feed it into substr() to get the
matches out of the original data, one handy function is regmatches()which extracts the matches in
the strings for you without you having to use substr().

> r <- regexpr("<dd>[F|f]ound(.*?)</dd>", homicides[1:5])

> regmatches(homicides[1:5], r)

[1] "<dd>Found on January 1, 2007</dd>" "<dd>Found on January 2, 2007</dd>"

[3] "<dd>Found on January 2, 2007</dd>" "<dd>Found on January 3, 2007</dd>"

[5] "<dd>Found on January 5, 2007</dd>"

19.6 sub() and gsub()

Sometimes we need to clean things up or modify strings by matching a pattern and replacing it with
something else. For example, how can we extract the date from this string?

> x <- substr(homicides[1], 177, 177 + 33 - 1)

> x

[1] "<dd>Found on January 1, 2007</dd>"

Wewant to strip out the stuff surrounding the “January 1, 2007” portion. We can do that by matching
on the text that comes before and after it using the | operator and then replacing it with the empty
string.

> sub("<dd>[F|f]ound on |</dd>", "", x)

[1] "January 1, 2007</dd>"

Notice that the sub() function found the first match (at the beginning of the string) and replaced it
and then stopped. However, there was another match at the end of the string that we also wanted
to replace. To get both matches, we need the gsub() function.

Regular Expressions 118

> gsub("<dd>[F|f]ound on |</dd>", "", x)

[1] "January 1, 2007"

The sub() and gsub()‘ functions can take vector arguments so we don’t have to process each string
one by one.

> r <- regexpr("<dd>[F|f]ound(.*?)</dd>", homicides[1:5])

> m <- regmatches(homicides[1:5], r)

> m

[1] "<dd>Found on January 1, 2007</dd>" "<dd>Found on January 2, 2007</dd>"

[3] "<dd>Found on January 2, 2007</dd>" "<dd>Found on January 3, 2007</dd>"

[5] "<dd>Found on January 5, 2007</dd>"

> d <- gsub("<dd>[F|f]ound on |</dd>", "", m)

>

> ## Nice and clean

> d

[1] "January 1, 2007" "January 2, 2007" "January 2, 2007" "January 3, 2007"

[5] "January 5, 2007"

Finally, it may be useful to convert these strings to the Date class so that we can do some date-related
computations.

> as.Date(d, "%B %d, %Y")

[1] "2007-01-01" "2007-01-02" "2007-01-02" "2007-01-03" "2007-01-05"

19.7 regexec()

The regexec() function works like regexpr() except it gives you the indices for parenthesized sub-
expressions. For example, take a look at the following expression.

> regexec("<dd>[F|f]ound on (.*?)</dd>", homicides[1])

[[1]]

[1] 177 190

attr(,"match.length")

[1] 33 15

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

Notice first that the regular expression itself has a portion in parentheses (). That is the portion of the
expression that I presume will contain the date. In the output, you’ll notice that there are two indices
and two “match.length” values. The first index tells you where the overall match begins (character
177) and the second index tells you where the expression in the parentheses begins (character 190).

By contrast, if we only use the regexpr() function, we get

Regular Expressions 119

> regexec("<dd>[F|f]ound on .*?</dd>", homicides[1])

[[1]]

[1] 177

attr(,"match.length")

[1] 33

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

We can use the substr() function to demonstrate which parts of a strings are matched by the
regexec() function.

Here’s the output for regexec().

> regexec("<dd>[F|f]ound on (.*?)</dd>", homicides[1])

[[1]]

[1] 177 190

attr(,"match.length")

[1] 33 15

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

Here’s the overall expression match.

> substr(homicides[1], 177, 177 + 33 - 1)

[1] "<dd>Found on January 1, 2007</dd>"

And here’s the parenthesized sub-expression.

> substr(homicides[1], 190, 190 + 15 - 1)

[1] "January 1, 2007"

All this can be done much more easily with the regmatches() function.

Regular Expressions 120

> r <- regexec("<dd>[F|f]ound on (.*?)</dd>", homicides[1:2])

> regmatches(homicides[1:2], r)

[[1]]

[1] "<dd>Found on January 1, 2007</dd>" "January 1, 2007"

[[2]]

[1] "<dd>Found on January 2, 2007</dd>" "January 2, 2007"

Notice that regmatches() returns a list in this case, where each element of the list contains two
strings: the overall match and the parenthesized sub-expression.

As an example, we can make a plot of monthly homicide counts. First we need a regular expression
to capture the dates.

> r <- regexec("<dd>[F|f]ound on (.*?)</dd>", homicides)

> m <- regmatches(homicides, r)

Then we can loop through the list returned by regmatches() and extract the second element of each
(the parenthesized sub-expression).

> dates <- sapply(m, function(x) x[2])

Finally, we can convert the date strings into the Date class and make a histogram of the counts.

> dates <- as.Date(dates, "%B %d, %Y")

> hist(dates, "month", freq = TRUE, main = "Monthly Homicides in Baltimore")

Regular Expressions 121

plot of chunk unnamed-chunk-35

We can see from the picture that homicides do not occur uniformly throughout the year and appear
to have some seasonality to them.

19.8 The stringr Package

The stringr package is part of the tidyverse⁴ collection of packages and wraps they underlying
stringi package in a series of convenience functions. Some of the complexity of using the base R

⁴https://www.tidyverse.org

https://www.tidyverse.org/
https://www.tidyverse.org/

Regular Expressions 122

regular expression functions is usefully hidden by the stringr functions. In addition, the stringr

functions provide a more rational interface to regular expressions with more consistency in the
arguments and argument ordering.

Given what we have discussed so far, there is a fairly straightforward mapping from the base R
functions to the stringr functions. In general, for the stringr functions, the data are the first
argument and the regular expression is the second argument, with optional arguments afterwards.

str_subset() is much like grep(value = TRUE) and returns a character vector of strings that contain
a given match.

> library(stringr)

> g <- str_subset(homicides, "iconHomicideShooting")

> length(g)

[1] 228

str_detect() is essentially equivalent grepl().

str_extract() plays the role of regexpr() and regmatches(), extracting the matches from the
output.

> str_extract(homicides[1:10], "<dd>[F|f]ound(.*?)</dd>")

[1] "<dd>Found on January 1, 2007</dd>" "<dd>Found on January 2, 2007</dd>"

[3] "<dd>Found on January 2, 2007</dd>" "<dd>Found on January 3, 2007</dd>"

[5] "<dd>Found on January 5, 2007</dd>" "<dd>Found on January 5, 2007</dd>"

[7] "<dd>Found on January 5, 2007</dd>" "<dd>Found on January 7, 2007</dd>"

[9] "<dd>Found on January 8, 2007</dd>" "<dd>Found on January 8, 2007</dd>"

Finally, str_match() does the job of regexec() by provide a matrix containing the parenthesized
sub-expressions.

> str_match(homicides[1:5], "<dd>[F|f]ound on (.*?)</dd>")

[,1] [,2]

[1,] "<dd>Found on January 1, 2007</dd>" "January 1, 2007"

[2,] "<dd>Found on January 2, 2007</dd>" "January 2, 2007"

[3,] "<dd>Found on January 2, 2007</dd>" "January 2, 2007"

[4,] "<dd>Found on January 3, 2007</dd>" "January 3, 2007"

[5,] "<dd>Found on January 5, 2007</dd>" "January 5, 2007"

Note how the second column of the output contains the values of the parenthesized sub-expressions.
We could now obtain these values by extracting the second column of the matrix. If there had been
more parenthesized sub-expressions, there would have been more columns in the output matrix.

Regular Expressions 123

19.9 Summary

The primary R functions for dealing with regular expressions are

• grep(), grepl(): Search for matches of a regular expression/pattern in a character vector
• regexpr(), gregexpr(): Search a character vector for regular expression matches and

return the indices where the match begins; useful in conjunction with regmatches()‘
• sub(), gsub(): Search a character vector for regular expression matches and replace that match
with another string

• regexec(): Gives you indices of parethensized sub-expressions.
• The stringr package provides a series of functions implementing much of the regular
expression functionality in R but with a more consistent and rationalized interface.

20. Debugging
20.1 Something’s Wrong!

Watch a video of this section¹ (note that this video differs slightly from the material presented here)

R has a number of ways to indicate to you that something’s not right. There are different levels of
indication that can be used, ranging from mere notification to fatal error. Executing any function in
R may result in the following conditions.

• message: A generic notification/diagnostic message produced by the message() function;
execution of the function continues

• warning: An indication that something is wrong but not necessarily fatal; execution of the
function continues. Warnings are generated by the warning() function

• error: An indication that a fatal problem has occurred and execution of the function stops.
Errors are produced by the stop() function.

• condition: A generic concept for indicating that something unexpected has occurred; program-
mers can create their own custom conditions if they want.

Here is an example of a warning that you might receive in the course of using R.

> log(-1)

Warning in log(-1): NaNs produced

[1] NaN

This warning lets you know that taking the log of a negative number results in a NaN value because
you can’t take the log of negative numbers. Nevertheless, R doesn’t give an error, because it has a
useful value that it can return, the NaN value. Thewarning is just there to let you know that something
unexpected happen. Depending on what you are programming, you may have intentionally taken
the log of a negative number in order to move on to another section of code.

Here is another function that is designed to print a message to the console depending on the nature
of its input.

¹https://youtu.be/LHQxbRInyyc

https://youtu.be/LHQxbRInyyc
https://youtu.be/LHQxbRInyyc

Debugging 125

> printmessage <- function(x) {

+ if(x > 0)

+ print("x is greater than zero")

+ else

+ print("x is less than or equal to zero")

+ invisible(x)

+ }

This function is simple—it prints a message telling you whether x is greater than zero or less than or
equal to zero. It also returns its input invisibly, which is a common practice with “print” functions.
Returning an object invisibly means that the return value does not get auto-printed when the
function is called.

Take a hard look at the function above and see if you can identify any bugs or problems.

We can execute the function as follows.

> printmessage(1)

[1] "x is greater than zero"

The function seems to work fine at this point. No errors, warnings, or messages.

> printmessage(NA)

Error in if (x > 0) print("x is greater than zero") else print("x is less than or equal to zer\

o"): missing value where TRUE/FALSE needed

What happened?

Well, the first thing the function does is test if x > 0. But you can’t do that test if x is a NA or NaN
value. R doesn’t know what to do in this case so it stops with a fatal error.

We can fix this problem by anticipating the possibility of NA values and checking to see if the input
is NA with the is.na() function.

> printmessage2 <- function(x) {

+ if(is.na(x))

+ print("x is a missing value!")

+ else if(x > 0)

+ print("x is greater than zero")

+ else

+ print("x is less than or equal to zero")

+ invisible(x)

+ }

Now we can run the following.

Debugging 126

> printmessage2(NA)

[1] "x is a missing value!"

And all is fine.

Now what about the following situation.

> x <- log(c(-1, 2))

Warning in log(c(-1, 2)): NaNs produced

We expect some NaNs here because taking the log of a negative number doesn’t make sense.

> printmessage2(x)

Error in if (is.na(x)) print("x is a missing value!") else if (x > 0) print("x is greater than\

zero") else print("x is less than or equal to zero"): the condition has length > 1

Now what?? Why are we getting this error?

The problem here is that I passed printmessage2() a vector x that was of length 2 rather then length
1. Inside the body of printmessage2() the expression is.na(x) returns a vector that is tested in the
if statement. However, if cannot take vector arguments so you get an error (in previous versions of
R you only got a warning). The fundamental problem here is that printmessage2() is not vectorized.

We can solve this problem two ways. One is by simply not allowing vector arguments. The other
way is to vectorize the printmessage2() function to allow it to take vector arguments.

For the first way, we simply need to check the length of the input.

> printmessage3 <- function(x) {

+ if(length(x) > 1L)

+ stop("'x' has length > 1")

+ if(is.na(x))

+ print("x is a missing value!")

+ else if(x > 0)

+ print("x is greater than zero")

+ else

+ print("x is less than or equal to zero")

+ invisible(x)

+ }

Now when we pass printmessage3() a vector we should get an error.

> printmessage3(1:2)

Error in printmessage3(1:2): 'x' has length > 1

Vectorizing the function can be accomplished easily with the Vectorize() function.

Debugging 127

> printmessage4 <- Vectorize(printmessage2)

> out <- printmessage4(c(-1, 2))

[1] "x is less than or equal to zero"

[1] "x is greater than zero"

You can see now that the correct messages are printed without any warning or error. Note that I
stored the return value of printmessage4() in a separate R object called out. This is because when
I use the Vectorize() function it no longer preserves the invisibility of the return value.

20.2 Figuring Out What’s Wrong

The primary task of debugging any R code is correctly diagnosing what the problem is. When
diagnosing a problem with your code (or somebody else’s), it’s important first understand what
you were expecting to occur. Then you need to idenfity what did occur and how did it deviate from
your expectations. Some basic questions you need to ask are

• What was your input? How did you call the function?
• What were you expecting? Output, messages, other results?
• What did you get?
• How does what you get differ from what you were expecting?
• Were your expectations correct in the first place?
• Can you reproduce the problem (exactly)?

Being able to answer these questions is important not just for your own sake, but in situations where
youmay need to ask someone else for help with debugging the problem. Seasoned programmers will
be asking you these exact questions.

20.3 Debugging Tools in R

Watch a video of this section²

R provides a number of tools to help you with debugging your code. The primary tools for debugging
functions in R are

• traceback(): prints out the function call stack after an error occurs; does nothing if there’s no
error

• debug(): flags a function for “debug” mode which allows you to step through execution of a
function one line at a time

• browser(): suspends the execution of a function wherever it is called and puts the function in
debug mode

²https://youtu.be/h9rs6-Cwwto

https://youtu.be/h9rs6-Cwwto
https://youtu.be/h9rs6-Cwwto

Debugging 128

• trace(): allows you to insert debugging code into a function a specific places
• recover(): allows you to modify the error behavior so that you can browse the function call
stack

These functions are interactive tools specifically designed to allow you to pick through a function.
There’s also the more blunt technique of inserting print() or cat() statements in the function.

20.4 Using traceback()

Watch a video of this section³

The traceback() function prints out the function call stack after an error has occurred. The function
call stack is the sequence of functions that was called before the error occurred.

For example, youmay have a function a()which subsequently calls function b()which calls c() and
then d(). If an error occurs, it may not be immediately clear in which function the error occurred.
The traceback() function shows you how many levels deep you were when the error occurred.

> mean(x)

Error in mean(x) : object 'x' not found

> traceback()

1: mean(x)

Here, it’s clear that the error occurred inside the mean() function because the object x does not exist.

The traceback() function must be called immediately after an error occurs. Once another function
is called, you lose the traceback.

Here is a slightly more complicated example using the lm() function for linear modeling.

> lm(y ~ x)

Error in eval(expr, envir, enclos) : object ’y’ not found

> traceback()

7: eval(expr, envir, enclos)

6: eval(predvars, data, env)

5: model.frame.default(formula = y ~ x, drop.unused.levels = TRUE)

4: model.frame(formula = y ~ x, drop.unused.levels = TRUE)

3: eval(expr, envir, enclos)

2: eval(mf, parent.frame())

1: lm(y ~ x)

You can see now that the error did not get thrown until the 7th level of the function call stack, in
which case the eval() function tried to evaluate the formula y ∼ x and realized the object y did not
exist.

Looking at the traceback is useful for figuring out roughly where an error occurred but it’s not useful
for more detailed debugging. For that you might turn to the debug() function.

³https://youtu.be/VT9ZxCp6o-I

https://youtu.be/VT9ZxCp6o-I
https://youtu.be/VT9ZxCp6o-I

Debugging 129

20.5 Using debug()

The debug() function initiates an interactive debugger (also known as the “browser” in R) for a
function. With the debugger, you can step through an R function one expression at a time to pinpoint
exactly where an error occurs.

The debug() function takes a function as its first argument. Here is an example of debugging the
lm() function.

> debug(lm) ## Flag the 'lm()' function for interactive debugging

> lm(y ~ x)

debugging in: lm(y ~ x)

debug: {

ret.x <- x

ret.y <- y

cl <- match.call()

...

if (!qr)

z$qr <- NULL

z

}

Browse[2]>

Now, every time you call the lm() function it will launch the interactive debugger. To turn this
behavior off you need to call the undebug() function.

The debugger calls the browser at the very top level of the function body. From there you can step
through each expression in the body. There are a few special commands you can call in the browser:

• n executes the current expression and moves to the next expression
• c continues execution of the function and does not stop until either an error or the function
exits

• Q quits the browser

Here’s an example of a browser session with the lm() function.

Debugging 130

Browse[2]> n ## Evalute this expression and move to the next one

debug: ret.x <- x

Browse[2]> n

debug: ret.y <- y

Browse[2]> n

debug: cl <- match.call()

Browse[2]> n

debug: mf <- match.call(expand.dots = FALSE)

Browse[2]> n

debug: m <- match(c("formula", "data", "subset", "weights", "na.action",

"offset"), names(mf), 0L)

While you are in the browser you can execute any other R function that might be available to you
in a regular session. In particular, you can use ls() to see what is in your current environment (the
function environment) and print() to print out the values of R objects in the function environment.

You can turn off interactive debugging with the undebug() function.

undebug(lm) ## Unflag the 'lm()' function for debugging

20.6 Using recover()

The recover() function can be used to modify the error behavior of R when an error occurs.
Normally, when an error occurs in a function, R will print out an error message, exit out of the
function, and return you to your workspace to await further commands.

With recover() you can tell R that when an error occurs, it should halt execution at the exact point
at which the error occurred. That can give you the opportunity to poke around in the environment
in which the error occurred. This can be useful to see if there are any R objects or data that have
been corrupted or mistakenly modified.

> options(error = recover) ## Change default R error behavior

> read.csv("nosuchfile") ## This code doesn't work

Error in file(file, "rt") : cannot open the connection

In addition: Warning message:

In file(file, "rt") :

cannot open file ’nosuchfile’: No such file or directory

Enter a frame number, or 0 to exit

1: read.csv("nosuchfile")

2: read.table(file = file, header = header, sep = sep, quote = quote, dec =

3: file(file, "rt")

Selection:

Debugging 131

The recover() function will first print out the function call stack when an error occurrs. Then, you
can choose to jump around the call stack and investigate the problem. When you choose a frame
number, you will be put in the browser (just like the interactive debugger triggered with debug())
and will have the ability to poke around.

20.7 Summary

• There are three main indications of a problem/condition: message, warning, error; only an
error is fatal

• When analyzing a function with a problem, make sure you can reproduce the problem, clearly
state your expectations and how the output differs from your expectation

• Interactive debugging tools traceback, debug, browser, trace, and recover can be used to find
problematic code in functions

• Debugging tools are not a substitute for thinking!

21. Profiling R Code
Let’s solve the problem but let’s not make it worse by guessing. —Gene Kranz, Apollo 13
Lead Flight Director

Watch a video of this section¹

R comes with a profiler to help you optimize your code and improve its performance. In generall, it’s
usually a bad idea to focus on optimizing your code at the very beginning of development. Rather, in
the beginning it’s better to focus on translating your ideas into code and writing code that’s coherent
and readable. The problem is that heavily optimized code tends to be obscure and difficult to read,
making it harder to debug and revise. Better to get all the bugs out first, then focus on optimizing.

Of course, when it comes to optimizing code, the question is what should you optimize?Well, clearly
should optimize the parts of your code that are running slowly, but how do we know what parts
those are?

This is what the profiler is for. Profiling is a systematic way to examine how much time is spent in
different parts of a program.

Sometimes profiling becomes necessary as a project grows and layers of code are placed on top of
each other. Often you might write some code that runs fine once. But then later, you might put that
same code in a big loop that runs 1,000 times. Now the original code that took 1 second to run is
taking 1,000 seconds to run! Getting that little piece of original code to run faster will help the entire
loop.

It’s tempting to think you just know where the bottlenecks in your code are. I mean, after all, you
write it! But trust me, I can’t tell you how many times I’ve been surprised at where exactly my code
is spending all its time. The reality is that profiling is better than guessing. Better to collect some data
than to go on hunches alone. Ultimately, getting the biggest impact on speeding up code depends on
knowing where the code spends most of its time. This cannot be done without some sort of rigorous
performance analysis or profiling.

We should forget about small efficiencies, say about 97% of the time: premature optimiza-
tion is the root of all evil —Donald Knuth

The basic principles of optimizing your code are:

• Design first, then optimize
• Remember: Premature optimization is the root of all evil
• Measure (collect data), don’t guess.
• If you’re going to be scientist, you need to apply the same principles here!
¹https://youtu.be/pHFgb12uG5s

https://youtu.be/pHFgb12uG5s
https://youtu.be/pHFgb12uG5s

Profiling R Code 133

21.1 Using system.time()

They system.time() function takes an arbitrary R expression as input (can be wrapped in curly
braces) and returns the amount of time taken to evaluate the expression. The system.time() function
computes the time (in seconds) needed to execute an expression and if there’s an error, gives the time
until the error occurred. The function returns an object of class proc_timewhich contains two useful
bits of information:

• user time: time charged to the CPU(s) for this expression
• elapsed time: “wall clock” time, the amount of time that passes for you as you’re sitting there

Usually, the user time and elapsed time are relatively close, for straight computing tasks. But there
are a few situations where the two can diverge, sometimes dramatically. The elapsed time may be
greater than the user time if the CPU spends a lot of time waiting around. This commonly happens
if your R expression involes some input or output, which depends on the activity of the file system
and the disk (or the Internet, if using a network connection).

The elapsed time may be smaller than the user time if your machine has multiple cores/processors
(and is capable of using them). For example, multi-threaded BLAS libraries (vecLib/Accelerate,
ATLAS, ACML, MKL) can greatly speed up linear algebra calculations and are commonly installed
on even desktop systems these days. Also, parallel processing done via something like the parallell
package can make the elapsed time smaller than the user time. When you have multiple processors/-
cores/machines working in parallel, the amount of time that the collection of CPUs spends working
on a problem is the same as with a single CPU, but because they are operating in parallel, there is a
savings in elapsed time.

Here’s an example of where the elapsed time is greater than the user time.

Elapsed time > user time

system.time(readLines("http://www.jhsph.edu"))

user system elapsed

0.004 0.002 0.431

Most of the time in this expression is spent waiting for the connection to the web server and waiting
for the data to travel back to my computer. This doesn’t involve the CPU and so the CPU simply
waits around for things to get done. Hence, the user time is small.

In this example, the elapsed time is smaller than the user time.

Profiling R Code 134

Elapsed time < user time

> hilbert <- function(n) {

+ i <- 1:n

+ 1 / outer(i - 1, i, "+")

+ }

> x <- hilbert(1000)

> system.time(svd(x))

user system elapsed

1.035 0.255 0.462

In this case I ran a singular value decomposition on the matrix in x, which is a common linear
algebra procedure. Because my computer is able to split the work across multiple processors, the
elapsed time is about half the user time.

21.2 Timing Longer Expressions

You can time longer expressions by wrapping them in curly braces within the call to system.time().

> system.time({

+ n <- 1000

+ r <- numeric(n)

+ for(i in 1:n) {

+ x <- rnorm(n)

+ r[i] <- mean(x)

+ }

+ })

user system elapsed

0.080 0.003 0.082

If your expression is getting pretty long (more than 2 or 3 lines), it might be better to either break it
into smaller pieces or to use the profiler. The problem is that if the expression is too long, you won’t
be able to identify which part of the code is causing the bottleneck.

21.3 The R Profiler

Watch a video of this section²

Using system.time() allows you to test certain functions or code blocks to see if they are taking
excessive amounts of time. However, this approach assumes that you already know where the
problem is and can call system.time() on it that piece of code. What if you don’t know where
to start?

²https://youtu.be/BZVcMPtlJ4A

https://youtu.be/BZVcMPtlJ4A
https://youtu.be/BZVcMPtlJ4A

Profiling R Code 135

This is where the profiler comes in handy. The Rprof() function starts the profiler in R. Note that R
must be compiled with profiler support (but this is usually the case). In conjunction with Rprof(),
we will use the summaryRprof() function which summarizes the output from Rprof() (otherwise it’s
not really readable). Note that you should NOT use system.time() and Rprof() together, or you
will be sad.

Rprof() keeps track of the function call stack at regularly sampled intervals and tabulates howmuch
time is spent inside each function. By default, the profiler samples the function call stack every 0.02
seconds. This means that if your code runs very quickly (say, under 0.02 seconds), the profiler is not
useful. But of your code runs that fast, you probably don’t need the profiler.

The profiler is started by calling the Rprof() function.

> Rprof() ## Turn on the profiler

You don’t need any other arguments. By default it will write its output to a file called Rprof.out.
You can specify the name of the output file if you don’t want to use this default.

Once you call the Rprof() function, everything that you do from then on will be measured by the
profiler. Therefore, you usually only want to run a single R function or expression once you turn on
the profiler and then immediately turn it off. The reason is that if you mix too many function calls
together when running the profiler, all of the results will be mixed together and you won’t be able
to sort out where the bottlenecks are. In reality, I usually only run a single function with the profiler
on.

The profiler can be turned off by passing NULL to Rprof().

> Rprof(NULL) ## Turn off the profiler

The raw output from the profiler looks something like this. Here I’m calling the lm() function on
some data with the profiler running.

lm(y ~ x)

sample.interval=10000

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm"

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm"

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm"

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

Profiling R Code 136

"lm.fit" "lm"

"lm.fit" "lm"

"lm.fit" "lm"

At each line of the output, the profiler writes out the function call stack. For example, on the very
first line of the output you can see that the code is 8 levels deep in the call stack. This is where you
need the summaryRprof() function to help you interpret this data.

21.4 Using summaryRprof()

The summaryRprof() function tabulates the R profiler output and calculates how much time is spent
in which function. There are two methods for normalizing the data.

• “by.total” divides the time spend in each function by the total run time
• “by.self” does the same as “by.total” but first subtracts out time spent in functions above the
current function in the call stack. I personally find this output to be much more useful.

Here is what summaryRprof() reports in the “by.total” output.

$by.total

total.time total.pct self.time self.pct

"lm" 7.41 100.00 0.30 4.05

"lm.fit" 3.50 47.23 2.99 40.35

"model.frame.default" 2.24 30.23 0.12 1.62

"eval" 2.24 30.23 0.00 0.00

"model.frame" 2.24 30.23 0.00 0.00

"na.omit" 1.54 20.78 0.24 3.24

"na.omit.data.frame" 1.30 17.54 0.49 6.61

"lapply" 1.04 14.04 0.00 0.00

"[.data.frame" 1.03 13.90 0.79 10.66

"[" 1.03 13.90 0.00 0.00

"as.list.data.frame" 0.82 11.07 0.82 11.07

"as.list" 0.82 11.07 0.00 0.00

Because lm() is the function that I called from the command line, of course 100% of the time is
spent somewhere in that function. However, what this doesn’t show is that if lm() immediately
calls another function (like lm.fit(), which does most of the heavy lifting), then in reality, most of
the time is spent in that function, rather than in the top-level lm() function.

The “by.self” output corrects for this discrepancy.

Profiling R Code 137

$by.self

self.time self.pct total.time total.pct

"lm.fit" 2.99 40.35 3.50 47.23

"as.list.data.frame" 0.82 11.07 0.82 11.07

"[.data.frame" 0.79 10.66 1.03 13.90

"structure" 0.73 9.85 0.73 9.85

"na.omit.data.frame" 0.49 6.61 1.30 17.54

"list" 0.46 6.21 0.46 6.21

"lm" 0.30 4.05 7.41 100.00

"model.matrix.default" 0.27 3.64 0.79 10.66

"na.omit" 0.24 3.24 1.54 20.78

"as.character" 0.18 2.43 0.18 2.43

"model.frame.default" 0.12 1.62 2.24 30.23

"anyDuplicated.default" 0.02 0.27 0.02 0.27

Now you can see that only about 4% of the runtime is spent in the actual lm() function, whereas
over 40% of the time is spent in lm.fit(). In this case, this is no surprise since the lm.fit() function
is the function that actually fits the linear model.

You can see that a reasonable amount of time is spent in functions not necessarily associated with
linear modeling (i.e. as.list.data.frame, [.data.frame). This is because the lm() function does a
bit of pre-processing and checking before it actually fits the model. This is common with modeling
functions—the preprocessing and checking is useful to see if there are any errors. But those two
functions take up over 1.5 seconds of runtime. What if you want to fit this model 10,000 times?
You’re going to be spending a lot of time in preprocessing and checking.

The final bit of output that summaryRprof() provides is the sampling interval and the total runtime.

$sample.interval

[1] 0.02

$sampling.time

[1] 7.41

21.5 Summary

• Rprof() runs the profiler for performance of analysis of R code
• summaryRprof() summarizes the output of Rprof() and gives percent of time spent in each
function (with two types of normalization)

• Good to break your code into functions so that the profiler can give useful information about
where time is being spent

• C or Fortran code is not profiled

22. Simulation
22.1 Generating Random Numbers

Watch a video of this section¹

Simulation is an important (and big) topic for both statistics and for a variety of other areas
where there is a need to introduce randomness. Sometimes you want to implement a statistical
procedure that requires random number generation or sampling (i.e. Markov chain Monte Carlo,
the bootstrap, random forests, bagging) and sometimes you want to simulate a system and random
number generators can be used to model random inputs.

R comes with a set of pseuodo-random number generators that allow you to simulate from well-
known probability distributions like the Normal, Poisson, and binomial. Some example functions
for probability distributions in R

• rnorm: generate random Normal variates with a given mean and standard deviation
• dnorm: evaluate the Normal probability density (with a given mean/SD) at a point (or vector of
points)

• pnorm: evaluate the cumulative distribution function for a Normal distribution
• rpois: generate random Poisson variates with a given rate

For each probability distribution there are typically four functions available that start with a “r”, “d”,
“p”, and “q”. The “r” function is the one that actually simulates randon numbers from that distribution.
The other functions are prefixed with a

• d for density
• r for random number generation
• p for cumulative distribution
• q for quantile function (inverse cumulative distribution)

If you’re only interested in simulating random numbers, then you will likely only need the
“r” functions and not the others. However, if you intend to simulate from arbitrary probability
distributions using something like rejection sampling, then you will need the other functions too.

Probably the most common probability distribution to work with the is the Normal distribution (also
known as the Gaussian). Working with the Normal distributions requires using these four functions

¹https://youtu.be/tzz4flrajr0

https://youtu.be/tzz4flrajr0
https://youtu.be/tzz4flrajr0

Simulation 139

dnorm(x, mean = 0, sd = 1, log = FALSE)

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

rnorm(n, mean = 0, sd = 1)

Here we simulate standard Normal random numbers with mean 0 and standard deviation 1.

> ## Simulate standard Normal random numbers

> x <- rnorm(10)

> x

[1] 0.01874617 -0.18425254 -1.37133055 -0.59916772 0.29454513 0.38979430

[7] -1.20807618 -0.36367602 -1.62667268 -0.25647839

We can modify the default parameters to simulate numbers with mean 20 and standard deviation 2.

> x <- rnorm(10, 20, 2)

> x

[1] 22.20356 21.51156 19.52353 21.97489 21.48278 20.17869 18.09011 19.60970

[9] 21.85104 20.96596

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

18.09 19.75 21.22 20.74 21.77 22.20

If you wanted to know what was the probability of a random Normal variable of being less than,
say, 2, you could use the pnorm() function to do that calculation.

> pnorm(2)

[1] 0.9772499

You never know when that calculation will come in handy.

22.2 Setting the random number seed

When simulating any random numbers it is essential to set the random number seed. Setting the
random number seed with set.seed() ensures reproducibility of the sequence of random numbers.

For example, I can generate 5 Normal random numbers with rnorm().

> set.seed(1)

> rnorm(5)

[1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078

Note that if I call rnorm() again I will of course get a different set of 5 random numbers.

Simulation 140

> rnorm(5)

[1] -0.8204684 0.4874291 0.7383247 0.5757814 -0.3053884

If I want to reproduce the original set of random numbers, I can just reset the seed with set.seed().

> set.seed(1)

> rnorm(5) ## Same as before

[1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078

In general, you should always set the random number seed when conducting a simulation!
Otherwise, you will not be able to reconstruct the exact numbers that you produced in an analysis.

It is possible to generate random numbers from other probability distributions like the Poisson. The
Poisson distribution is commonly used to model data that come in the form of counts.

> rpois(10, 1) ## Counts with a mean of 1

[1] 0 0 1 1 2 1 1 4 1 2

> rpois(10, 2) ## Counts with a mean of 2

[1] 4 1 2 0 1 1 0 1 4 1

> rpois(10, 20) ## Counts with a mean of 20

[1] 19 19 24 23 22 24 23 20 11 22

22.3 Simulating a Linear Model

Watch a video of this section²

Simulating random numbers is useful but sometimes we want to simulate values that come from a
specific model. For that we need to specify the model and then simulate from it using the functions
described above.

Suppose we want to simulate from the following linear model

y = β0 + β1x+ ε

where ε ∼ N (0, 22). Assume x ∼ N (0, 12), β0 = 0.5 and β1 = 2. The variable x might represent an
important predictor of the outcome y. Here’s how we could do that in R.

²https://youtu.be/p7kSSSsv4ms

https://youtu.be/p7kSSSsv4ms
https://youtu.be/p7kSSSsv4ms

Simulation 141

> ## Always set your seed!

> set.seed(20)

>

> ## Simulate predictor variable

> x <- rnorm(100)

>

> ## Simulate the error term

> e <- rnorm(100, 0, 2)

>

> ## Compute the outcome via the model

> y <- 0.5 + 2 * x + e

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-6.4084 -1.5402 0.6789 0.6893 2.9303 6.5052

We can plot the results of the model simulation.

> plot(x, y)

plot of chunk Linear Model

What if we wanted to simulate a predictor variable x that is binary instead of having a Normal
distribution. We can use the rbinom() function to simulate binary random variables.

> set.seed(10)

> x <- rbinom(100, 1, 0.5)

> str(x) ## 'x' is now 0s and 1s

int [1:100] 1 0 0 1 0 0 0 0 1 0 ...

Then we can procede with the rest of the model as before.

> e <- rnorm(100, 0, 2)

> y <- 0.5 + 2 * x + e

> plot(x, y)

plot of chunk Linear Model Binary

We can also simulate from generalized linear model where the errors are no longer from a Normal
distribution but come from some other distribution. For examples, suppose we want to simulate
from a Poisson log-linear model where

Simulation 142

Y ∼ Poisson(µ)

logµ = β0 + β1x

and β0 = 0.5 and β1 = 0.3. We need to use the rpois() function for this

> set.seed(1)

>

> ## Simulate the predictor variable as before

> x <- rnorm(100)

Now we need to compute the log mean of the model and then exponentiate it to get the mean to
pass to rpois().

> log.mu <- 0.5 + 0.3 * x

> y <- rpois(100, exp(log.mu))

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 1.00 1.00 1.55 2.00 6.00

> plot(x, y)

plot of chunk Poisson Log-Linear Model

You can build arbitrarily complex models like this by simulating more predictors or making
transformations of those predictors (e.g. squaring, log transformations, etc.).

22.4 Random Sampling

Watch a video of this section³

The sample() function draws randomly from a specified set of (scalar) objects allowing you to sample
from arbitrary distributions of numbers.

³https://youtu.be/-7GA10KWDJg

https://youtu.be/-7GA10KWDJg
https://youtu.be/-7GA10KWDJg

Simulation 143

> set.seed(1)

> sample(1:10, 4)

[1] 9 4 7 1

> sample(1:10, 4)

[1] 2 7 3 6

>

> ## Doesn't have to be numbers

> sample(letters, 5)

[1] "r" "s" "a" "u" "w"

>

> ## Do a random permutation

> sample(1:10)

[1] 10 6 9 2 1 5 8 4 3 7

> sample(1:10)

[1] 5 10 2 8 6 1 4 3 9 7

>

> ## Sample w/replacement

> sample(1:10, replace = TRUE)

[1] 3 6 10 10 6 4 4 10 9 7

To sample more complicated things, such as rows from a data frame or a list, you can sample the
indices into an object rather than the elements of the object itself.

Here’s how you can sample rows from a data frame.

> library(datasets)

> data(airquality)

> head(airquality)

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

Nowwe just need to create the index vector indexing the rows of the data frame and sample directly
from that index vector.

Simulation 144

> set.seed(20)

>

> ## Create index vector

> idx <- seq_len(nrow(airquality))

>

> ## Sample from the index vector

> samp <- sample(idx, 6)

> airquality[samp,]

Ozone Solar.R Wind Temp Month Day

107 NA 64 11.5 79 8 15

120 76 203 9.7 97 8 28

130 20 252 10.9 80 9 7

98 66 NA 4.6 87 8 6

29 45 252 14.9 81 5 29

45 NA 332 13.8 80 6 14

Other more complex objects can be sampled in this way, as long as there’s a way to index the sub-
elements of the object.

22.5 Summary

• Drawing samples from specific probability distributions can be done with “r” functions
• Standard distributions are built in: Normal, Poisson, Binomial, Exponential, Gamma, etc.
• The sample() function can be used to draw random samples from arbitrary vectors
• Setting the random number generator seed via set.seed() is critical for reproducibility

23. Data Analysis Case Study: Changes
in Fine Particle Air Pollution in the
U.S.

This chapter presents an example data analysis looking at changes in fine particulate matter (PM) air
pollution in the United States using the Environmental Protection Agencies freely available national
monitoring data. The purpose of the chapter is to just show how the various tools that we have
covered in this book can be used to read, manipulate, and summarize data so that you can develop
statistical evidence for relevant real-world questions.

Watch a video of this chapter¹

23.1 Synopsis

In this chapter we aim to describe the changes in fine particle (PM2.5) outdoor air pollution in the
United States between the years 1999 and 2012. Our overall hypothesis is that outdoor PM2.5 has
decreased on average across the U.S. due to nationwide regulatory requirements arising from the
Clean Air Act. To investigate this hypothesis, we obtained PM2.5 data from the U.S. Environmental
Protection Agency which is collected from monitors sited across the U.S. We specifically obtained
data for the years 1999 and 2012 (the most recent complete year available). From these data, we
found that, on average across the U.S., levels of PM2.5 have decreased between 1999 and 2012. At
one individual monitor, we found that levels have decreased and that the variability of PM2.5 has
decreased. Most individual states also experienced decreases in PM2.5, although some states saw
increases.

23.2 Loading and Processing the Raw Data

From the EPA Air Quality System² we obtained data on fine particulate matter air pollution (PM2.5)
that is monitored across the U.S. as part of the nationwide PM monitoring network. We obtained
the files for the years 1999 and 2012.

¹https://youtu.be/VE-6bQvyfTQ
²http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html

https://youtu.be/VE-6bQvyfTQ
http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html
https://youtu.be/VE-6bQvyfTQ
http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html

Data Analysis Case Study: Changes in Fine Particle Air Pollution in the U.S. 146

Reading in the 1999 data

We first read in the 1999 data from the raw text file included in the zip archive. The data is a delimited
file were fields are delimited with the | character and missing values are coded as blank fields. We
skip some commented lines in the beginning of the file and initially we do not read the header data.

> pm0 <- read.table("pm25_data/RD_501_88101_1999-0.txt", comment.char = "#", header = FALSE, s\

ep = "|", na.strings = "")

After reading in the 1999 we check the first few rows (there are 117,421) rows in this dataset.

> dim(pm0)

[1] 117421 28

> head(pm0[, 1:13])

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13

1 RD I 1 27 1 88101 1 7 105 120 19990103 00:00 NA

2 RD I 1 27 1 88101 1 7 105 120 19990106 00:00 NA

3 RD I 1 27 1 88101 1 7 105 120 19990109 00:00 NA

4 RD I 1 27 1 88101 1 7 105 120 19990112 00:00 8.841

5 RD I 1 27 1 88101 1 7 105 120 19990115 00:00 14.920

6 RD I 1 27 1 88101 1 7 105 120 19990118 00:00 3.878

We then attach the column headers to the dataset and make sure that they are properly formated
for R data frames.

> cnames <- readLines("pm25_data/RD_501_88101_1999-0.txt", 1)

> cnames <- strsplit(cnames, "|", fixed = TRUE)

> ## Ensure names are properly formatted

> names(pm0) <- make.names(cnames[[1]])

> head(pm0[, 1:13])

X..RD Action.Code State.Code County.Code Site.ID Parameter POC

1 RD I 1 27 1 88101 1

2 RD I 1 27 1 88101 1

3 RD I 1 27 1 88101 1

4 RD I 1 27 1 88101 1

5 RD I 1 27 1 88101 1

6 RD I 1 27 1 88101 1

Sample.Duration Unit Method Date Start.Time Sample.Value

1 7 105 120 19990103 00:00 NA

2 7 105 120 19990106 00:00 NA

3 7 105 120 19990109 00:00 NA

4 7 105 120 19990112 00:00 8.841

5 7 105 120 19990115 00:00 14.920

6 7 105 120 19990118 00:00 3.878

The column we are interested in is the Sample.Value column which contains the PM2.5 measure-
ments. Here we extract that column and print a brief summary.

Data Analysis Case Study: Changes in Fine Particle Air Pollution in the U.S. 147

> x0 <- pm0$Sample.Value

> summary(x0)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

0.00 7.20 11.50 13.74 17.90 157.10 13217

Missing values are a common problem with environmental data and so we check to se what
proportion of the observations are missing (i.e. coded as NA).

> mean(is.na(x0)) ## Are missing values important here?

[1] 0.1125608

Because the proportion of missing values is relatively low (0.1125608), we choose to ignore missing
values for now.

Reading in the 2012 data

We then read in the 2012 data in the same manner in which we read the 1999 data (the data files are
in the same format).

> pm1 <- read.table("pm25_data/RD_501_88101_2012-0.txt", comment.char = "#",

+ header = FALSE, sep = "|", na.strings = "", nrow = 1304290)

We also set the column names (they are the same as the 1999 dataset) and extract the Sample.Value
column from this dataset.

> names(pm1) <- make.names(cnames[[1]])

> x1 <- pm1$Sample.Value

23.3 Results

Entire U.S. analysis

In order to show aggregate changes in PM across the entire monitoring network, we can make
boxplots of all monitor values in 1999 and 2012. Here, we take the log of the PM values to adjust for
the skew in the data.

Data Analysis Case Study: Changes in Fine Particle Air Pollution in the U.S. 148

> boxplot(log2(x0), log2(x1))

Warning in boxplot.default(log2(x0), log2(x1)): NaNs produced

Warning in bplt(at[i], wid = width[i], stats = z$stats[, i], out = z$out[z$group

== : Outlier (-Inf) in boxplot 1 is not drawn

Warning in bplt(at[i], wid = width[i], stats = z$stats[, i], out = z$out[z$group

== : Outlier (-Inf) in boxplot 2 is not drawn

plot of chunk unnamed-chunk-5

Data Analysis Case Study: Changes in Fine Particle Air Pollution in the U.S. 149

> summary(x0)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

0.00 7.20 11.50 13.74 17.90 157.10 13217

> summary(x1)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

-10.00 4.00 7.63 9.14 12.00 908.97 73133

Interestingly, from the summary of x1 it appears there are some negative values of PM, which in
general should not occur. We can investigate that somewhat to see if there is anything we should
worry about.

> negative <- x1 < 0

> mean(negative, na.rm = T)

[1] 0.0215034

There is a relatively small proportion of values that are negative, which is perhaps reassuring. In
order to investigate this a step further we can extract the date of each measurement from the original
data frame. The idea here is that perhaps negative values occur more often in some parts of the year
than other parts. However, the original data are formatted as character strings so we convert them
to R’s Date format for easier manipulation.

> dates <- pm1$Date

> dates <- as.Date(as.character(dates), "%Y%m%d")

We can then extract the month from each of the dates with negative values and attempt to identify
when negative values occur most often.

> missing.months <- month.name[as.POSIXlt(dates)$mon + 1]

> tab <- table(factor(missing.months, levels = month.name))

> round(100 * tab / sum(tab))

January February March April May June July August

15 13 15 13 14 13 8 6

September October November December

3 0 0 0

From the table above it appears that bulk of the negative values occur in the first six months of
the year (January–June). However, beyond that simple observation, it is not clear why the negative
values occur. That said, given the relatively low proportion of negative values, we will ignore them
for now.

Data Analysis Case Study: Changes in Fine Particle Air Pollution in the U.S. 150

Changes in PM levels at an individual monitor

So far we have examined the change in PM levels on average across the country. One issue with the
previous analysis is that the monitoring network could have changed in the time period between
1999 and 2012. So if for some reason in 2012 there are more monitors concentrated in cleaner parts
of the country than there were in 1999, it might appear the PM levels decreased when in fact they
didn’t. In this section we will focus on a single monitor in New York State to see if PM levels at that
monitor decreased from 1999 to 2012.

Our first task is to identify a monitor in New York State that has data in 1999 and 2012 (not all
monitors operated during both time periods). First we subset the data frames to only include data
from New York (State.Code == 36) and only include the County.Code and the Site.ID (i.e. monitor
number) variables.

> site0 <- unique(subset(pm0, State.Code == 36, c(County.Code, Site.ID)))

> site1 <- unique(subset(pm1, State.Code == 36, c(County.Code, Site.ID)))

Then we create a new variable that combines the county code and the site ID into a single string.

> site0 <- paste(site0[,1], site0[,2], sep = ".")

> site1 <- paste(site1[,1], site1[,2], sep = ".")

> str(site0)

chr [1:33] "1.5" "1.12" "5.73" "5.80" "5.83" "5.110" "13.11" "27.1004" ...

> str(site1)

chr [1:18] "1.5" "1.12" "5.80" "5.133" "13.11" "29.5" "31.3" "47.122" ...

Finaly, we want the intersection between the sites present in 1999 and 2012 so that we might choose
a monitor that has data in both periods.

> both <- intersect(site0, site1)

> print(both)

[1] "1.5" "1.12" "5.80" "13.11" "29.5" "31.3" "63.2008"

[8] "67.1015" "85.55" "101.3"

Here (above) we can see that there are 10monitors that were operating in both time periods. However,
rather than choose one at random, it might best to choose one that had a reasonable amount of data
in each year.

Data Analysis Case Study: Changes in Fine Particle Air Pollution in the U.S. 151

> ## Find how many observations available at each monitor

> pm0$county.site <- with(pm0, paste(County.Code, Site.ID, sep = "."))

> pm1$county.site <- with(pm1, paste(County.Code, Site.ID, sep = "."))

> cnt0 <- subset(pm0, State.Code == 36 & county.site %in% both)

> cnt1 <- subset(pm1, State.Code == 36 & county.site %in% both)

Now that we have subsetted the original data frames to only include the data from the monitors that
overlap between 1999 and 2012, we can split the data frames and count the number of observations
at each monitor to see which ones have the most observations.

> ## 1999

> sapply(split(cnt0, cnt0$county.site), nrow)

1.12 1.5 101.3 13.11 29.5 31.3 5.80 63.2008 67.1015 85.55

61 122 152 61 61 183 61 122 122 7

> ## 2012

> sapply(split(cnt1, cnt1$county.site), nrow)

1.12 1.5 101.3 13.11 29.5 31.3 5.80 63.2008 67.1015 85.55

31 64 31 31 33 15 31 30 31 31

A number of monitors seem suitable from the output, but we will focus here on County 63 and site
ID 2008.

> both.county <- 63

> both.id <- 2008

>

> ## Choose county 63 and side ID 2008

> pm1sub <- subset(pm1, State.Code == 36 & County.Code == both.county & Site.ID == both.id)

> pm0sub <- subset(pm0, State.Code == 36 & County.Code == both.county & Site.ID == both.id)

Now we plot the time series data of PM for the monitor in both years.

> dates1 <- as.Date(as.character(pm1sub$Date), "%Y%m%d")

> x1sub <- pm1sub$Sample.Value

> dates0 <- as.Date(as.character(pm0sub$Date), "%Y%m%d")

> x0sub <- pm0sub$Sample.Value

>

> ## Find global range

> rng <- range(x0sub, x1sub, na.rm = T)

> par(mfrow = c(1, 2), mar = c(4, 5, 2, 1))

> plot(dates0, x0sub, pch = 20, ylim = rng, xlab = "", ylab = expression(PM[2.5] * " (" * mu *\

g/m^3 * ")"))

> abline(h = median(x0sub, na.rm = T))

> plot(dates1, x1sub, pch = 20, ylim = rng, xlab = "", ylab = expression(PM[2.5] * " (" * mu *\

g/m^3 * ")"))

> abline(h = median(x1sub, na.rm = T))

Data Analysis Case Study: Changes in Fine Particle Air Pollution in the U.S. 152

plot of chunk unnamed-chunk-12

From the plot above, we can that median levels of PM (horizontal solid line) have decreased a little
from 10.45 in 1999 to 8.29 in 2012. However, perhaps more interesting is that the variation (spread)
in the PM values in 2012 is much smaller than it was in 1999. This suggest that not only are median
levels of PM lower in 2012, but that there are fewer large spikes from day to day. One issue with the
data here is that the 1999 data are from July through December while the 2012 data are recorded in
January through April. It would have been better if we’d had full-year data for both years as there
could be some seasonal confounding going on.

Changes in state-wide PM levels

Although ambient air quality standards are set at the federal level in the U.S. and hence affect the
entire country, the actual reduction and management of PM is left to the individual states. States
that are not “in attainment” have to develop a plan to reduce PM so that that the are in attainment
(eventually). Therefore, it might be useful to examine changes in PM at the state level. This analysis
falls somewhere in between looking at the entire country all at once and looking at an individual
monitor.

What we do here is calculate the mean of PM for each state in 1999 and 2012.

Data Analysis Case Study: Changes in Fine Particle Air Pollution in the U.S. 153

> ## 1999

> mn0 <- with(pm0, tapply(Sample.Value, State.Code, mean, na.rm = TRUE))

> ## 2012

> mn1 <- with(pm1, tapply(Sample.Value, State.Code, mean, na.rm = TRUE))

>

> ## Make separate data frames for states / years

> d0 <- data.frame(state = names(mn0), mean = mn0)

> d1 <- data.frame(state = names(mn1), mean = mn1)

> mrg <- merge(d0, d1, by = "state")

> head(mrg)

state mean.x mean.y

1 1 19.956391 10.126190

2 10 14.492895 11.236059

3 11 15.786507 11.991697

4 12 11.137139 8.239690

5 13 19.943240 11.321364

6 15 4.861821 8.749336

Now make a plot that shows the 1999 state-wide means in one “column” and the 2012 state-wide
means in another columns. We then draw a line connecting the means for each year in the same
state to highlight the trend.

> par(mfrow = c(1, 1))

> rng <- range(mrg[,2], mrg[,3])

> with(mrg, plot(rep(1, 52), mrg[, 2], xlim = c(.5, 2.5), ylim = rng, xaxt = "n", xlab = "", y\

lab = "State-wide Mean PM"))

> with(mrg, points(rep(2, 52), mrg[, 3]))

> segments(rep(1, 52), mrg[, 2], rep(2, 52), mrg[, 3])

> axis(1, c(1, 2), c("1999", "2012"))

Data Analysis Case Study: Changes in Fine Particle Air Pollution in the U.S. 154

plot of chunk unnamed-chunk-14

From the plot above we can see that many states have decreased the average PM levels from 1999
to 2012 (although a few states actually increased their levels).

24. Parallel Computation
Many computations in R can be made faster by the use of parallel computation. Generally, parallel
computation is the simultaneous execution of different pieces of a larger computation acrossmultiple
computing processors or cores. The basic idea is that if you can execute a computation inX seconds
on a single processor, then you should be able to execute it in X/n seconds on n processors. Such a
speed-up is generally not possible because of overhead and various barriers to splitting up a problem
into n pieces, but it is often possible to come close in simple problems.

It used to be that parallel computationwas squarely in the domain of “high-performance computing”,
where expensive machines were linked together via high-speed networking to create large clusters
of computers. In those kinds of settings, it was important to have sophisticated software to manage
the communication of data between different computers in the cluster. Parallel computing in that
setting was a highly tuned, and carefully customized operation and not something you could just
saunter into.

These days though, almost all computers contain multiple processors or cores on them. Even Apple’s
iPhone 6S comes with a dual-core CPU¹ as part of its A9 system-on-a-chip. Getting access to a
“cluster” of CPUs, in this case all built into the same computer, is much easier than it used to be and
this has opened the door to parallel computing for a wide range of people.

In this chapter, wewill discuss some of the basic funtionality in R for executing parallel computations.
In particular, we will focus on functions that can be used onmulti-core computers, which these days
is almost all computers. It is possible to do more traditional parallel computing via the network-of-
workstations style of computing, but we will not discuss that here.

24.1 Hidden Parallelism

You may be computing in parallel without even knowing it! These days, many computational
libraries have built-in parallelism that can be used behind the scenes. Usually, this kind of “hidden
parallelism” will generally not affect you and will improve you computational efficiency. However,
it’s usually a good idea that you know it’s going on (even in the background) because it may affect
other work you are doing on the machine. Also, certain shared computing environments may have
rules about howmany cores/CPUs you are allowed to use and if a function fires off multiple parallel
jobs, it may cause a problem for others sharing the system with you.

Parallel BLAS

A common example in R is the use of linear algebra functions. Some versions of R that you use may
be linked to on optimized Basic Linear Algebra Subroutines (BLAS) library. Such libraries are custom

¹https://en.wikipedia.org/wiki/Apple_A9

https://en.wikipedia.org/wiki/Apple_A9
https://en.wikipedia.org/wiki/Apple_A9

Parallel Computation 156

coded for specific CPUs/chipsets to take advantage of the architecture of the chip. It’s important to
realize that while R can do linear algebra out of the box, its default BLAS library is a reference
implementation that is not necessarily optimized to any particular chipset.

When possible, it’s always a good idea to install an optimized BLAS on your system because it
can dramatically improve the performance of those kinds of computations. Part of the increase in
performance comes from the customization of the code to a particular chipset while part of it comes
from the multi-threading that many libraries use to parallelize their computations.

For example, below I simulate a matrix X of 1 million observations by 100 predictors and generate
an outcome y.

> X <- matrix(rnorm(1e6 * 100), 1e6, 100)

> dim(X)

[1] 1000000 100

> b <- rnorm(100)

> y <- drop(X %*% b) + rnorm(1e6)

Then I compute the least squares estimates of the linear regression coefficents when regressing the
response y on the predictor matrix X.

> system.time(b <- solve(crossprod(X), crossprod(X, y)))

user system elapsed

0.854 0.002 0.448

Here, you can see that the user time is just under 1 second while the elapsed time is about half
that. Here, the key task, matrix inversion, was handled by the optimized BLAS and was computed
in parallel so that the elapsed time was less than the user or CPU time. In this case, I was using a
Mac that was linked to Apple’s Accelerate framework which contains an optimized BLAS.

Here’s a summary of some of the optimized BLAS libraries out there:

• The AMD Core Math Library² (ACML) is built for AMD chips and contains a full set of BLAS
and LAPACK routines. The library is closed-source and is maintained/released by AMD.

• The Intel Math Kernel³ is an analogous optimized library for Intel-based chips
• The Accelerate framework⁴ on the Mac contains an optimized BLAS built by Apple.
• The Automatically Tuned Linear Algebra Software⁵ (ATLAS) library is a special “adaptive”
software package that is designed to be compiled on the computer where it will be used. As
part of the build process, the library extracts detailed CPU information and optimizes the code
as it goes along. The ATLAS library is hence a generic package that can be built on a wider
array of CPUs.

²http://developer.amd.com/tools-and-sdks/archive/amd-core-math-library-acml/
³https://software.intel.com/en-us/intel-mkl
⁴https://developer.apple.com/library/tvos/documentation/Accelerate/Reference/AccelerateFWRef/index.html
⁵http://math-atlas.sourceforge.net

http://developer.amd.com/tools-and-sdks/archive/amd-core-math-library-acml/
https://software.intel.com/en-us/intel-mkl
https://developer.apple.com/library/tvos/documentation/Accelerate/Reference/AccelerateFWRef/index.html
http://math-atlas.sourceforge.net/
http://developer.amd.com/tools-and-sdks/archive/amd-core-math-library-acml/
https://software.intel.com/en-us/intel-mkl
https://developer.apple.com/library/tvos/documentation/Accelerate/Reference/AccelerateFWRef/index.html
http://math-atlas.sourceforge.net/

Parallel Computation 157

Detailed instructions on how to use R with optimized BLAS libraries can be found in the R
Installation and Administration⁶ manual. In some cases, you may need to build R from the sources
in order to link it with the optimized BLAS library.

24.2 Embarrassing Parallelism

Many problems in statistics and data science can be executed in an “embarrassingly parallel” way,
wherebymultiple independent pieces of a problem are executed simultaneously because the different
pieces of the problem never really have to communicate with each other (except perhaps at the end
when all the results are assembled). Despite the name, there’s nothing really “embarrassing” about
taking advantage of the structure of the problem and using it speed up your computation. In fact,
embarrassingly parallel computation is a common paradigm in statistics and data science.

In general, it is NOT a good idea to use the functions described in this chapter with graphical user
interfaces (GUIs) because, to summarize the help page for mclapply(), bad things can happen. That
said, the functions in the parallel package seem two work okay in RStudio.

The basic mode of an embarrassingly parallel operation can be seen with the lapply() function,
which we have reviewed in a previous chapter. Recall that the lapply() function has two arguments:

1. A list, or an object that can be coerced to a list.
2. A function to be applied to each element of the list

Finally, recall that lapply() always returns a list whose length is equal to the length of the input
list.

The lapply() function works much like a loop–it cycles through each element of the list and applies
the supplied function to that element. While lapply() is applying your function to a list element,
the other elements of the list are just…sitting around in memory. Note that in the description of
lapply() above, there’s no mention of the different elements of the list communicating with each
other, and the function being applied to a given list element does not need to know about other list
elements.

Just about any operation that is handled by the lapply() function can be parallelized. This approach
is analogous to the “map-reduce”⁷ approach in large-scale cluster systems. The idea is that a list object
can be split across multiple cores of a processor and then the function can be applied to each subset
of the list object on each of the cores. Conceptually, the steps in the parallel procedure are

1. Split list X across multiple cores

⁶https://cran.r-project.org/doc/manuals/r-release/R-admin.html#BLAS
⁷https://en.wikipedia.org/wiki/MapReduce

https://cran.r-project.org/doc/manuals/r-release/R-admin.html#BLAS
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#BLAS
https://en.wikipedia.org/wiki/MapReduce
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#BLAS
https://en.wikipedia.org/wiki/MapReduce

Parallel Computation 158

2. Copy the supplied function (and associated environment) to each of the cores
3. Apply the supplied function to each subset of the list X on each of the cores in parallel
4. Assemble the results of all the function evaluations into a single list and return

The differences between the many packages/functions in R essentially come down to how each of
these steps are implemented. In this chapter we will cover the parallel package, which has a few
implementations of this paradigm. The goal of the functions in this package (and in other related
packages) is to abstract the complexities of the implemetation so that the R user is presented a
relatively clean interface for doing computations.

24.3 The Parallel Package

The parallel package which comes with your R installation. It represents a combining of two his-
torical packages–the multicore and snow packages, and the functions in parallel have overlapping
names with those older packages. For our purposes, it’s not necessary to know anything about the
multicore or snow packages, but long-time users of R may remember them from back in the day.

The mclapply() function essentially parallelizes calls to lapply(). The first two arguments to
mclapply() are exactly the same as they are for lapply(). However, mclapply() has further
arguments (that must be named), the most important of which is the mc.cores argument which
you can use to specify the number of processors/cores you want to split the computation across.
For example, if your machine has 4 cores on it, you might specify mc.cores = 4 to break your
parallelize your operation across 4 cores (although this may not be the best idea if you are running
other operations in the background besides R).

The mclapply() function (and related mc* functions) works via the fork mechanism on Unix-style
operating systems. Briefly, your R session is the main process and when you call a function like
mclapply(), you fork a series of sub-processes that operate independently from the main process
(although they share a few low-level features). These sub-processes then execute your function
on their subsets of the data, presumably on separate cores of your CPU. Once the computation
is complete, each sub-process returns its results and then the sub-process is killed. The parallel

package manages the logistics of forking the sub-processes and handling them once they’ve finished.

Because of the use of the fork mechanism, the mc* functions are generally not available to users of
the Windows operating system.

The first thing you might want to check with the parallel package is if your computer in fact has
multiple cores that you can take advantage of.

Parallel Computation 159

> library(parallel)

> detectCores()

[1] 16

The computer on which this is being written is a circa 2016 MacBook Pro (with Touch Bar) with 2
physical CPUs. However, because each core allows for hyperthreading, each core is presented as 2
separate cores, allowing for 4 “logical” cores. This is what detectCores() returns. On some systems
you can call detectCores(logical = FALSE) to return the number of physical cores.

> detectCores(logical = FALSE) ## Same answer as before on some systems?

[1] 8

In general, the information from detectCores() should be used cautiously as obtaining this kind
of information from Unix-like operating systems is not always reliable. If you are going down this
road, it’s best if you get to know your hardware better in order to have an understanding of how
many CPUs/cores are available to you.

mclapply()

The simplest application of the parallel package is via the mclapply() function, which conceptually
splits what might be a call to lapply() across multiple cores. Just to show how the function works,
I’ll run some code that splits a job across 10 cores and then just sleeps for 10 seconds.

> r <- mclapply(1:10, function(i) {

+ Sys.sleep(10) ## Do nothing for 10 seconds

+ }, mc.cores = 10) ## Split this job across 10 cores

While this “job” was running, I took a screen shot of the system activity monitor (“top”). Here’s what
it looks like on Mac OS X.

Parallel Computation 160

Multiple sub-processes spawned by mclapply()

In case you are not used to viewing this output, each row of the table is an application or process
running on your computer. You can see that there are 11 rows where the COMMAND is labelled
rsession. One of these is my primary R session (being run through RStudio), and the other 10 are
the sub-processes spawned by the mclapply() function.

We will use as a second (slightly more realistic) example processing data from multiple files. Often
this is something that can be easily parallelized.

Here we have data on ambient concentrations of sulfate particulate matter (PM) and nitrate PM from
332 monitors around the United States. First, we can read in the data via a simple call to lapply().

> infiles <- dir("specdata", full.names = TRUE)

> specdata <- lapply(infiles, read.csv)

Now, specdata is a list of data frames, with each data frame corresponding to each of the 332
monitors in the dataset.

One thing we might want to do is compute a summary statistic across each of the monitors. For
example, we might want to compute the 90th percentile of sulfate for each of the monitors. This can
easily be implemented as a serial call to lapply().

Parallel Computation 161

> s <- system.time({

+ mn <- lapply(specdata, function(df) {

+ quantile(df$sulfate, 0.9, na.rm = TRUE)

+ })

+ })

> s

user system elapsed

0.056 0.002 0.058

Note that in the system.time() output, the user time (0.056 seconds) and the elapsed time (0.058
seconds) are roughly the same, which is what we would expect because there was no parallelization.

The equivalent call using mclapply() would be

> s <- system.time({

+ mn <- mclapply(specdata, function(df) {

+ quantile(df$sulfate, 0.9, na.rm = TRUE)

+ }, mc.cores = 4)

+ })

> s

user system elapsed

0.054 0.034 0.035

You’ll notice that the the elapsed time is now less than the user time. However, in general, the
elapsed time will not be 1/4th of the user time, which is what we might expect with 4 cores if there
were a perfect performance gain from parallelization.

R keeps track of how much time is spent in the main process and how much is spent in any child
processes.

> s["user.self"] ## Main process

user.self

0.003

> s["user.child"] ## Child processes

user.child

0.051

In the call to mclapply() you can see that virtually all of the user time is spent in the child processes.
The total user time is the sum of the self and child times.

In some cases it is possible for the parallelized version of an R expression to actually be slower than
the serial version. This can occur if there is substantial overhead in creating the child processes. For
example, time must be spent copying information over to the child processes and communicating
the results back to the parent process. However, for most substantial computations, there will be
some benefit in parallelization.

Parallel Computation 162

One advantage of serial computations is that it allows you to better keep a handle on how much
memory your R job is using. When executing parallel jobs via mclapply() it’s important to pre-
calculate how much memory all of the processes will require and make sure this is less than the
total amount of memory on your computer.

The mclapply() function is useful for iterating over a single list or list-like object. If you have to
iterate over multiple objects together, you can use mcmapply(), which is the themulti-core equivalent
of the mapply() function.

Error Handling

When either mclapply() or mcmapply() are called, the functions supplied will be run in the sub-
process while effectively being wrapped in a call to try(). This allows for one of the sub-processes
to fail without disrupting the entire call to mclapply(), possibly causing you to lose much of your
work. If one sub-process fails, it may be that all of the others work just fine and produce good results.

This error handling behavior is a significant difference from the usual call to lapply(). With
lapply(), if the supplied function fails on one component of the list, the entire function call to
lapply() fails and you only get an error as a result.

With mclapply(), when a sub-process fails, the return value for that sub-process will be an R object
that inherits from the class "try-error", which is something you can test with the inherits()

function. Conceptually, each child process is executed with the try() function wrapped around it.
The code below deliberately causes an error in the 3 element of the list.

> r <- mclapply(1:5, function(i) {

+ if(i == 3L)

+ stop("error in this process!")

+ else

+ return("success!")

+ }, mc.cores = 5)

Warning in mclapply(1:5, function(i) {: scheduled core 3 encountered error in

user code, all values of the job will be affected

Here we see there was a warning but no error in the running of the above code. We can check the
return value.

Parallel Computation 163

> str(r)

List of 5

$: chr "success!"

$: chr "success!"

$: 'try-error' chr "Error in FUN(X[[i]], ...) : error in this process!\n"

..- attr(*, "condition")=List of 2

.. ..$ message: chr "error in this process!"

.. ..$ call : language FUN(X[[i]], ...)

.. ..- attr(*, "class")= chr [1:3] "simpleError" "error" "condition"

$: chr "success!"

$: chr "success!"

Note that the 3rd list element in r is different.

> class(r[[3]])

[1] "try-error"

> inherits(r[[3]], "try-error")

[1] TRUE

When running code where there may be errors in some of the sub-processes, it’s useful to check
afterwards to see if there are any errors in the output received.

> bad <- sapply(r, inherits, what = "try-error")

> bad

[1] FALSE FALSE TRUE FALSE FALSE

You can subsequently subset your return object to only keep the “good” elements.

> r.good <- r[!bad]

> str(r.good)

List of 4

$: chr "success!"

$: chr "success!"

$: chr "success!"

$: chr "success!"

24.4 Example: Bootstrapping a Statistic

One technique that is commonly used to assess the variability of a statistic is the bootstrap. Briefly,
the bootstrap technique resamples the original dataset with replacement to create pseudo-datasets
that are similar to, but slightly perturbed from, the original dataset. This technique is particularly
useful when the statistic in question does not have a readily accessible formula for its standard error.

One example of a statistic for which the bootstrap is useful is themedian. Here, we plot the histogram
of some of the sulfate particulate matter data from the previous example.

Parallel Computation 164

> dat <- read.csv("specdata/001.csv")

> sulf <- dat$sulfate

> sulf <- sulf[!is.na(sulf)] ## Remove missing values

> hist(sulf, xlab = expression("Sulfate PM (" * mu * g/m^3 * ")"))

plot of chunk unnamed-chunk-14

We can see from the histogram that the distribution of sulfate is skewed to the right. Therefore, it
would seem that the median might be a better summary of the distribution than the mean.

Parallel Computation 165

> summary(sulf)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.613 2.210 2.870 3.881 4.730 19.100

How can we construct confidence interval for the median of sulfate for this monitor? The bootstrap
is simple procedure that can work well. Here’s how we might do it in the usual (non-parallel) way.

> set.seed(1)

> med.boot <- replicate(5000, {

+ xnew <- sample(sulf, replace = TRUE)

+ median(xnew)

+ })

A 95% confidence interval would then take the 2.5th and 97.5th percentiles of this distribution (this
is known as the percentile method).

> quantile(med.boot, c(0.025, 0.975))

2.5% 97.5%

2.70 3.47

How could be done in parallel? We could simply wrap the expression passed to replicate() in
a function and pass it to mclapply(). However, one thing we need to be careful of is generating
random numbers.

Generating Random Numbers

Generating random numbers in a parallel environment warrants caution because it’s possible to
create a situation where each of the sub-processes are all generating the exact same random numbers.
For the most part, the mc* functions do their best to avoid this.

> r <- mclapply(1:5, function(i) {

+ rnorm(3)

+ }, mc.cores = 5)

> str(r)

List of 5

$: num [1:3] 0.84605 -0.00347 0.76635

$: num [1:3] 0.98 -1.26 1.42

$: num [1:3] 0.259 -1.288 -1.976

$: num [1:3] -0.144 0.142 1.938

$: num [1:3] -0.6112 0.2432 0.0382

However, the above expression is not reproducible because the next time you run it, you will get a
different set of random numbers. You cannot simply call set.seed() before running the expression
as you might in a non-parallel version of the code.

Parallel Computation 166

The parallel package provides a way to reproducibly generate random numbers in a parallel
environment via the “L’Ecuyer-CMRG” random number generator. Note that this is not the default
random number generator so you will have to set it explicitly.

> ## Reproducible random numbers

> RNGkind("L'Ecuyer-CMRG")

> set.seed(1)

> r <- mclapply(1:5, function(i) {

+ rnorm(3)

+ }, mc.cores = 4)

> str(r)

List of 5

$: num [1:3] -0.485 -0.626 -0.873

$: num [1:3] -1.86 -1.825 -0.995

$: num [1:3] 1.177 1.472 -0.988

$: num [1:3] 0.984 1.291 0.459

$: num [1:3] 1.43 -1.137 0.844

Running the above code twice will generate the same random numbers in each of the sub-processes.

Now we can run our parallel bootstrap in a reproducible way.

> RNGkind("L'Ecuyer-CMRG")

> set.seed(1)

> med.boot <- mclapply(1:5000, function(i) {

+ xnew <- sample(sulf, replace = TRUE)

+ median(xnew)

+ }, mc.cores = 4)

> med.boot <- unlist(med.boot) ## Collapse list into vector

> quantile(med.boot, c(0.025, 0.975))

2.5% 97.5%

2.70000 3.46025

Although I’ve rarely seen it done in practice (including in my own code), it’s a good idea to explicitly
set the random number generator via RNGkind(), in addition to setting the seed with set.seed().
This way, you can be sure that the appropriate random number generator is being used every time
and your code will be reproducible even on a system where the default generator has been changed.

Using the boot package

For bootstrapping in particular, you can use the boot package to do most of the work and the key
boot function has an option to do the work in parallel.

Parallel Computation 167

> library(boot)

> b <- boot(sulf, function(x, i) median(x[i]), R = 5000, parallel = "multicore", ncpus = 4)

> boot.ci(b, type = "perc")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 5000 bootstrap replicates

CALL :

boot.ci(boot.out = b, type = "perc")

Intervals :

Level Percentile

95% (2.70, 3.47)

Calculations and Intervals on Original Scale

24.5 Building a Socket Cluster

Using the forking mechanism on your computer is one way to execute parallel computation but
it’s not the only way that the parallel package offers. Another way to build a “cluster” using the
multiple cores on your computer is via sockets. A socket⁸ is simply a mechanismwith whichmultiple
processes or applications running on your computer (or different computers, for that matter) can
communicate with each other. With parallel computation, data and results need to be passed back
and forth between the parent and child processes and sockets can be used for that purpose.

Building a socket cluster is simple to do in R with the makeCluster() function. Here I’m initializing
a cluster with 4 components.

> cl <- makeCluster(4)

The cl object is an abstraction of the entire cluster and is what we’ll use to indicate to the various
cluster functions that we want to do parallel computation.

You’ll notice that the makeCluster() function has a type argument that allows for different types
of clusters beyond using sockets (although the default is a socket cluster). We will not discuss these
other options here.

To do an lapply() operation over a socket cluster we can use the parLapply() function. For example,
we can use parLapply() to run our median bootstrap example described above.

⁸https://en.wikipedia.org/wiki/Network_socket

https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/Network_socket

Parallel Computation 168

> med.boot <- parLapply(cl, 1:5000, function(i) {

+ xnew <- sample(sulf, replace = TRUE)

+ median(xnew)

+ })

Error in checkForRemoteErrors(val): 4 nodes produced errors; first error: object 'sulf' not fo\

und

You’ll notice, unfortunately, that there’s an error in running this code. The reason is that while
we have loaded the sulfate data into our R session, the data is not available to the independent
child processes that have been spawned by the makeCluster() function. The data, and any other
information that the child process will need to execute your code, needs to be exported to the child
process from the parent process via the clusterExport() function. The need to export data is a key
difference in behavior between the “multicore” approach and the “socket” approach.

> clusterExport(cl, "sulf")

The second argument to clusterExport() is a character vector, and so you can export an arbitrary
number of R objects to the child processes. You should be judicious in choosing what you export
simply because each R object will be replicated in each of the child processes, and hence take up
memory on your computer.

Once the data have been exported to the child processes, we can run our bootstrap code again.

> med.boot <- parLapply(cl, 1:5000, function(i) {

+ xnew <- sample(sulf, replace = TRUE)

+ median(xnew)

+ })

> med.boot <- unlist(med.boot) ## Collapse list into vector

> quantile(med.boot, c(0.025, 0.975))

2.5% 97.5%

2.70 3.46

Once you’ve finished working with your cluster, it’s good to clean up and stop the cluster child
processes (quitting R will also stop all of the child processes).

> stopCluster(cl)

24.6 Summary

In this chapter we reviewed two different approaches to executing parallel computations in
R. Both approaches used the parallel package, which comes with your installation of R. The
“multicore” approach, which makes use of the mclapply() function is perhaps the simplest and can

Parallel Computation 169

be implemented on just about any multi-core system (which nowadays is any system). The “socket”
approach is a bit more general and can be implemented on systems where the fork-ing mechanism
is not available. The approach used in the “socket” type cluster can also be extended to other parallel
cluster management systems which unfortunately are outside the scope of this book.

In general, using parallel computation can speed up “embarrassingly parallel” computations, typi-
cally with little additional effort. However, it’s important to remember that splitting a computation
across N processors usually does not result in a N-times speed up of your computation. This is
because there is some overhead involved with initiating the sub-processes and copying the data
over to those processes.

25. Why I Indent My Code 8 Spaces
At the Use R! 2018 meeting in Brisbane, Australia, Jenny Bryan gave a wonderful talk about “Code
Smells and Feels” (I recommend you watch a video of that talk¹). Her talk covers various ways to
detect when your code “smells” and how to fix those smells through refactoring. While there is quite
a bit of literature on this with respect to other programming languages, it’s not well-covered with
respect to R.

As mentioned previously in this book, my general indenting policy for R code is to use 8 spaces per
indent. In my experience, people tend to find this a rather extreme indentation policy, with maybe
4 spaces being at the outer limit of what they could imagine. But I’ve been using 8 spaces for a long
time now and I’ve found that it has a number of benefits.

First off, I did not make up the 8 space indent. I got it from the Linux kernal coding style document².
Chapter 1 says:

Tabs are 8 characters, and thus indentations are also 8 characters. There are heretic
movements that try to make indentations 4 (or even 2!) characters deep, and that is akin
to trying to define the value of PI to be 3.

I’ve found the Linux kernal coding style to be pretty useful for my R programming, but a lot of it is
C-specific and so not relevant. Nevertheless, it’s worth a quick peruse.

Personally, I’ve found 8 spaces is good for my aging eyes. I think my rule is that the appropriate
number of spaces of indentation is proportional to the square of my age (I’m still working on that
model though). At this point, code with a 2 space indent is indistinguishable from flush left.

Before going on, I have to emphasize that the 8 space indent cannot exist in isolation. It has to
be coupled with a right-hand side limit of 80 columns. Otherwise, you could just indent yourself
off to infinity and there would be no consequences. An 80 column limit forces you to keep your
code within reasonable limits. Also, if someone ever needs to read your code on a PDP/11 you’ll be
A-okay.

Most importantly though, I’ve found that the 8 space indent serves as a kind of early warning system
for “smelly” code. Jenny gave some smelly examples in her talk and I thought I’d reproduce them
here. This first example, as Jenny describes, suffers from not using the available class predicate
functions to test for “numeric” or “integer”. Here’s the example with a 2 space indent.

¹https://youtu.be/7oyiPBjLAWY
²https://www.kernel.org/doc/Documentation/process/coding-style.rst

https://youtu.be/7oyiPBjLAWY
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://youtu.be/7oyiPBjLAWY
https://www.kernel.org/doc/Documentation/process/coding-style.rst

Why I Indent My Code 8 Spaces 171

bizarro <- function(x) {

if (class(x)[[1]] == "numeric" || class(x)[[1]] == "integer") {

-x

} else if (class(x)[[1]] == "logical") {

!x

} else {

stop(...)

}

}

That first if state sticks out a little bit because it’s rather long. Better code might use the
is.numeric() and is.integer() functions.

Here’s the same example with an 8 space indent.

bizarro <- function(x) {

if (class(x)[[1]] == "numeric" || class(x)[[1]] == "integer") {

-x

} else if (class(x)[[1]] == "logical") {

!x

} else {

stop(...)

}

}

Although, it’s not egregious, that first line is pushing up against the 80 column limit on the right-
hand side. You might not do anything about it in this case, but the purpose of the indenting system
is to at least trigger a reaction.

The next example from Jenny’s talk is a bit more obvious. Here she gives a lesson in excessive if-
else statements. The original code with 2 space indent is here.

get_some_data <- function(config, outfile) {

if (config_ok(config)) {

if (can_write(outfile)) {

if (can_open_network_connection(config)) {

data <- parse_something_from_network()

if(makes_sense(data)) {

data <- beautify(data)

write_it(data, outfile)

return(TRUE)

} else {

return(FALSE)

}

} else {

stop("Can't access network")

}

Why I Indent My Code 8 Spaces 172

} else {

uhm. What was this else for again?

}

} else {

maybe, some bad news about ... the config?

}

}

Now, it’s fair to say that this code already looks a bit smelly (fishy?), but it’s maybe passable from
a visual standpoint. Let’s take a look at it with 8 space indents.

get_some_data <- function(config, outfile) {

if (config_ok(config)) {

if (can_write(outfile)) {

if (can_open_network_connection(config)) {

data <- parse_something_from_network()

if(makes_sense(data)) {

data <- beautify(data)

write_it(data, outfile)

return(TRUE)

} else {

return(FALSE)

}

} else {

stop("Can't access network")

}

} else {

uhm. What was this else for again?

}

} else {

maybe, some bad news about ... the config?

}

}

Now the code looks downright absurd, practically crying out for refactoring, and rightly so! The five
levels of nesting will be unreadable as soon as you blink your eyes.

That’s basically it. I’ve found zero downsides to using an 8 space indent and a number of upsides,
including cleaner, more modular code. Because the visual indicator penalizes against lots of
indenting, you are usually forced to write out separate functions to handle different tasks rather
than go one more level in. This not only has the benefit of being modular, but it’s also useful for
things like profiling (it can be very uninformative to profile a single monolithic function).

26. About the Author
Roger D. Peng is a Professor of Biostatistics at the Johns Hopkins Bloomberg School of Public Health.
He is also a Co-Founder of the Johns Hopkins Data Science Specialization¹, which has enrolled over
1.5 million students, the Johns Hopkins Executive Data Science Specialization², the Simply Statistics
blog³ where hewrites about statistics and data science for the general public, and theNot So Standard
Deviations⁴ podcast. Roger can be found on Twitter and GitHub under the user name @rdpeng⁵.

¹http://www.coursera.org/specialization/jhudatascience/1
²https://www.coursera.org/specializations/executive-data-science
³http://simplystatistics.org/
⁴http://nssdeviations.com/
⁵https://twitter.com/rdpeng

http://www.coursera.org/specialization/jhudatascience/1
https://www.coursera.org/specializations/executive-data-science
http://simplystatistics.org/
http://simplystatistics.org/
http://nssdeviations.com/
http://nssdeviations.com/
https://twitter.com/rdpeng
http://www.coursera.org/specialization/jhudatascience/1
https://www.coursera.org/specializations/executive-data-science
http://simplystatistics.org/
http://nssdeviations.com/
https://twitter.com/rdpeng

	Table of Contents
	Stay in Touch!
	Preface
	History and Overview of R
	What is R?
	What is S?
	The S Philosophy
	Back to R
	Basic Features of R
	Free Software
	Design of the R System
	Limitations of R
	R Resources

	Getting Started with R
	Installation
	Getting started with the R interface

	R Nuts and Bolts
	Entering Input
	Evaluation
	R Objects
	Numbers
	Attributes
	Creating Vectors
	Mixing Objects
	Explicit Coercion
	Matrices
	Lists
	Factors
	Missing Values
	Data Frames
	Names
	Summary

	Getting Data In and Out of R
	Reading and Writing Data
	Reading Data Files with read.table()
	Reading in Larger Datasets with read.table
	Calculating Memory Requirements for R Objects

	Using the readr Package
	Using Textual and Binary Formats for Storing Data
	Using dput() and dump()
	Binary Formats

	Interfaces to the Outside World
	File Connections
	Reading Lines of a Text File
	Reading From a URL Connection

	Subsetting R Objects
	Subsetting a Vector
	Subsetting a Matrix
	Subsetting Lists
	Subsetting Nested Elements of a List
	Extracting Multiple Elements of a List
	Partial Matching
	Removing NA Values

	Vectorized Operations
	Vectorized Matrix Operations

	Dates and Times
	Dates in R
	Times in R
	Operations on Dates and Times
	Summary

	Managing Data Frames with the dplyr package
	Data Frames
	The dplyr Package
	dplyr Grammar
	Installing the dplyr package
	select()
	filter()
	arrange()
	rename()
	mutate()
	group_by()
	%>%
	Summary

	Control Structures
	if-else
	for Loops
	Nested for loops
	while Loops
	repeat Loops
	next, break
	Summary

	Functions
	Functions in R
	Your First Function
	Argument Matching
	Lazy Evaluation
	The ... Argument
	Arguments Coming After the ... Argument
	Summary

	Scoping Rules of R
	A Diversion on Binding Values to Symbol
	Scoping Rules
	Lexical Scoping: Why Does It Matter?
	Lexical vs. Dynamic Scoping
	Application: Optimization
	Plotting the Likelihood
	Summary

	Coding Standards for R
	Loop Functions
	Looping on the Command Line
	lapply()
	sapply()
	split()
	Splitting a Data Frame
	tapply
	apply()
	Col/Row Sums and Means
	Other Ways to Apply
	mapply()
	Vectorizing a Function
	Summary

	Regular Expressions
	Before You Begin
	Primary R Functions
	grep()
	grepl()
	regexpr()
	sub() and gsub()
	regexec()
	The stringr Package
	Summary

	Debugging
	Something’s Wrong!
	Figuring Out What's Wrong
	Debugging Tools in R
	Using traceback()
	Using debug()
	Using recover()
	Summary

	Profiling R Code
	Using system.time()
	Timing Longer Expressions
	The R Profiler
	Using summaryRprof()
	Summary

	Simulation
	Generating Random Numbers
	Setting the random number seed
	Simulating a Linear Model
	Random Sampling
	Summary

	Data Analysis Case Study: Changes in Fine Particle Air Pollution in the U.S.
	Synopsis
	Loading and Processing the Raw Data
	Results

	Parallel Computation
	Hidden Parallelism
	Embarrassing Parallelism
	The Parallel Package
	Example: Bootstrapping a Statistic
	Building a Socket Cluster
	Summary

	Why I Indent My Code 8 Spaces
	About the Author

